本文已被:浏览 1502次 下载 2629次
Received:June 07, 2015 Revised:September 24, 2015
Received:June 07, 2015 Revised:September 24, 2015
中文摘要: 提前准确预测所需电力负荷,做好电力规划是电力部门保证电力供应稳定不可或缺的重要环节.基于欧洲智能网络(EUNITE)竞赛电力数据和北美电力数据,提出一种多因素加法模型,进行中期电力预测.考虑到温度、假期、星期等因素对电力负荷产生不同的影响,拟合出这些因素与电力负荷之间的映射关系,相加得到电力负荷预测的函数.还比较了业界常用的7种不同的算法模型,使用6种不同指标对这些模型和多因素加法模型进行评估,实验结果发现,在这8种不同算法模型中,多因素加法模型有着更加精确的预测性能,运算速度比其他模型快,并且模型更加容易理解和解释.
Abstract:Accuracy forecasting of electric load is important for power system to make plan. A Multiple Factors Addictive(MFA) model is proposed to predict mid-term electric load based on Europe(EUNITE) competition dataset and North American electric dataset. Firstly, MFA considers factors such as temperature, holiday, and week separately to fit functions for electric loads. And then all these fitted functions are added together to a unified function, which is used to make prediction of the electric load. Seven other state-of-art algorithms which are popular in the field are also used to make forecasting. The performances of prediction models are evaluated by using 6 different metrics. Compared with 7 other kinds of different models prediction results, MFA has the advantages of more accurate forecasting performance and faster operational speed, and is simple and easy to understand.
keywords: load forecasting multiple factors additive model mid-term load forecast artificial intelligence algorithms data mining
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61472082);福建省自然科学基金(2014J01220)
引用文本:
翁金芳,黄伟,江育娥,林劼.基于多因素加法模型的中期电力负荷预测.计算机系统应用,2016,25(3):14-20
WENG Jin-Fang,HUANG Wei,JIANG Yu-E,LING Jie.Multiple Factors Addictive Model for Mid-Term Electric Load Forecasting.COMPUTER SYSTEMS APPLICATIONS,2016,25(3):14-20
翁金芳,黄伟,江育娥,林劼.基于多因素加法模型的中期电力负荷预测.计算机系统应用,2016,25(3):14-20
WENG Jin-Fang,HUANG Wei,JIANG Yu-E,LING Jie.Multiple Factors Addictive Model for Mid-Term Electric Load Forecasting.COMPUTER SYSTEMS APPLICATIONS,2016,25(3):14-20