本文已被:浏览 1502次 下载 2914次
Received:June 17, 2015 Revised:July 30, 2015
Received:June 17, 2015 Revised:July 30, 2015
中文摘要: 目标分类是计算机视觉与模式识别领域的关键环节. SVM(支持向量机)是在统计学习理论基础上提出的一种新的机器学习方法.提出一种支持向量机结合梯度直方图特征的离线图像目标分类算法.首先对训练集进行预处理,然后对处理后的图片进行梯度直方图特征提取,最后通过训练得到可以检测图像目标的分类器.利用得到的分类器对测试图片进行测试,测试结果表明,对目标分类检测有良好的效果.
Abstract:Target classification is a key link in the field of computer vision and pattern recognition. SVM(support vector machine) is a new machine learning method put forward based on statistical learning theory. In this paper, an offline image target classification algorithm based on gradient histogram feature of support vector machine is proposed. First, the training set is preprocessed, and then the image is extracted by histogram feature extraction. Finally, the classifier can be detected by training. The test images are tested by using the classifier. The test results show that the target classification test has good effect.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61340019);山东省自然科学基金(ZR2012FM029,ZR2013FQ019)
引用文本:
王娜,万洪林,白成杰.基于SVM的离线图像目标分类算法.计算机系统应用,2016,25(2):208-211
WANG Na,WAN Hong-Lin,BAI Cheng-Jie.Offline Image Target Classification Algorithm Based on SVM.COMPUTER SYSTEMS APPLICATIONS,2016,25(2):208-211
王娜,万洪林,白成杰.基于SVM的离线图像目标分类算法.计算机系统应用,2016,25(2):208-211
WANG Na,WAN Hong-Lin,BAI Cheng-Jie.Offline Image Target Classification Algorithm Based on SVM.COMPUTER SYSTEMS APPLICATIONS,2016,25(2):208-211