本文已被:浏览 1172次 下载 2143次
Received:May 18, 2015 Revised:June 15, 2015
Received:May 18, 2015 Revised:June 15, 2015
中文摘要: 数据安全是数字化校园建设的重要问题,快速准确检测数字化校园的安全性及存在的风险和漏洞,成为急需解决的问题.在改进BP算法基础上,设计一个基于神经网络的数字化校园安全检测原型.通过统计底层网络协议(TCP)的数据流量和信息数据包协议头的信息,将信息预处理后送入已训练过的神经网络模块,以此判断当前网络数据流量存在的攻击或扫描行为.实现快速检测数字化校园存在的漏洞和安全隐患,提前预防和减少数字化校园受到的攻击和破坏.
Abstract:Data security is an important problem in digital campus construction. It is urgent to find a way to detect the risk and vulnerabilities of digital campus security. Therefore, a digital campus etwork security detection prototype was designed based on the improved BP algorithm. The data flow and nformation coming from the underlying network protocols(TCP) will be collected and pre-handled. The trained neural network module will react to these data and information, which gives the clue to determine the existing attack or scanning behavior in current network data flow. Rapid detection of digital campus existing vulnerabilities and security risks can prevent and reduce the attack and destruction.
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation |
ZHANG Ling | Shangqiu Medical College, Shangqiu 476100, China |
Author Name | Affiliation |
ZHANG Ling | Shangqiu Medical College, Shangqiu 476100, China |
引用文本:
张领.神经网络在数字化校园安全检测中的应用.计算机系统应用,2015,24(11):271-275
ZHANG Ling.Application of Neural Network in the Digital Campus Safety Testing.COMPUTER SYSTEMS APPLICATIONS,2015,24(11):271-275
张领.神经网络在数字化校园安全检测中的应用.计算机系统应用,2015,24(11):271-275
ZHANG Ling.Application of Neural Network in the Digital Campus Safety Testing.COMPUTER SYSTEMS APPLICATIONS,2015,24(11):271-275