本文已被:浏览 1343次 下载 2341次
Received:March 13, 2015 Revised:May 12, 2015
Received:March 13, 2015 Revised:May 12, 2015
中文摘要: 极限学习机(ELM)是一种新型单馈层神经网络算法,在训练过程中只需要设置合适的隐藏层节点个数,随机赋值输入权值和隐藏层偏差,一次完成无需迭代.结合遗传算法在预测模型参数寻优方面的优势,找到极限学习机的最优参数取值,建立成都双流国际机场旅客吞吐量预测模型,通过对比支持向量机、BP神经网络,分析遗传-极限学习机算法在旅客吞吐量预测中的可行性和优势.仿真结果表明遗传-极限学习机算法不仅可行,并且与原始极限学习机算法相比,在预测精度和训练速度上具有比较明显的优势.
Abstract:Extreme learning machine(ELM) is a new type of single feed layer neural network algorithm. In the training process ELM only needs to set the hidden layer node number of suitable, random set the input weights and hidden layer deviation, finish in one time without iteration. Now use the genetic algorithm to optimize the extreme learning machine to find the optimal parameter values, so as to establish the Chengdu Shuangliu International Airport passenger throughput prediction model. Then through the comparison of support vector machine, BP neural network, analysis the feasibility and advantage of genetic-extreme learning machine algorithm. The simulation results show that the genetic-extreme learning machine algorithm is not only feasible, and compared with the original extreme learning machine algorithm, it has obvious advantages in prediction accuracy and training speed.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金民航联合基金(U1233105)
引用文本:
廖洪一,王欣.极限学习机在机场旅客吞吐量预测中的应用.计算机系统应用,2015,24(11):257-261
LIAO Hong-Yi,WANG Xin.Application of Extreme Learning Machine Algorithm in Predicting the Airport Passenger Throughput.COMPUTER SYSTEMS APPLICATIONS,2015,24(11):257-261
廖洪一,王欣.极限学习机在机场旅客吞吐量预测中的应用.计算机系统应用,2015,24(11):257-261
LIAO Hong-Yi,WANG Xin.Application of Extreme Learning Machine Algorithm in Predicting the Airport Passenger Throughput.COMPUTER SYSTEMS APPLICATIONS,2015,24(11):257-261