###
DOI:
计算机系统应用英文版:2015,24(11):213-218
本文二维码信息
码上扫一扫!
车辆尾灯灯语的检测与识别
(1.中国科学技术大学信息科学技术学院, 合肥 23007;2.中国科学院合肥智能机械研究所, 合肥 230031)
Detection and Recognition the Signals of Vehicle Taillight
(1.School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China;2.Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1456次   下载 4674
Received:March 10, 2015    Revised:April 29, 2015
中文摘要: 针对有效利用车辆灯语信息的问题,提出了一种基于图像的车辆尾灯灯语的检测识别新方法.该方法首先利用颜色、对称性特征在图像中检测出车辆尾灯对,并对车辆尾灯进行连续的跟踪.然后使用参数优化的最小二乘支持向量机(Least Squares Support Vector Machines,简称LS-SVM)对得到的车尾灯状态进行分类判别.最后结合状态历史信息,综合推断出各前方车辆当前灯语含义.以实车拍摄的白天道路视频进行实验,可以看到由识别出的灯语信息能够准确判断出前方车辆刹车、转向、灯不亮,表明该检测识别方法有效.
Abstract:In this paper, a new algorithm of taillight signals detection and recognition based on image is proposed. Firstly, the algorithm detects and tracks vehicle taillights using color and symmetry features of the images. Secondly, we employ parameters-optimized Least Squares Support Vector Machines(LS-SVM) to classify the current states of detected taillights. Finally, we set up state chains from past frames to recognize the signals of taillights. Through the experiments on the real road, we can see that the recognized signals can correctly indicate the behaviors of brake and turn of preceding cars, which shows that our algorithm is valid.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(91120307,91320301)
引用文本:
田强,孔斌,孙翠敏,王灿.车辆尾灯灯语的检测与识别.计算机系统应用,2015,24(11):213-218
TIAN Qiang,KONG Bin,SUN Cui-Min,WANG Can.Detection and Recognition the Signals of Vehicle Taillight.COMPUTER SYSTEMS APPLICATIONS,2015,24(11):213-218