###
DOI:
计算机系统应用英文版:2015,24(11):204-208
本文二维码信息
码上扫一扫!
基于动态蚁群遗传算法的士兵个性化学习
(装甲兵工程学院信息工程系, 北京 100072)
Soldier's Personalized Learning Based on Dynamic Ant-Genetic Algorithm
(Department of Information Engineer, Academy of Armored Forces Engineering, Beijing 100072, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1235次   下载 2195
Received:April 15, 2015    Revised:May 07, 2015
中文摘要: 面对士兵学历层次,知识理解能力和掌握速度参差不齐的现状,千篇一律的士兵职业技能教育体制已不再适应网络化时代发展和信息化部队建设的需要.文章在分析了当前士兵职业技能教育存在的问题以及蚁群算法和遗传算法各自的特点之后,提出了根据最佳融合点交叉调用蚁群算法和遗传算法的策略,以使蚁群算法的寻优结果作为遗传算法的种子来优化其初始种群,并模仿TSP问题将士兵的个性化学习过程成功地转化为一个典型的组合优化问题,以此来寻找适合每位士兵的个性化学习路径.实验结果表明,改进后的蚁群遗传算法的收敛速度和寻优能力大大提高.
Abstract:Confronting the situation of uneven educational background, knowledge comprehension and master speed of soldiers, stereotype education system of soldier's occupational skill no longer adapts the demand of network era development and informational military construction. The paper puts forward to the tactic of dynamically call ant algorithm and genetic algorithm according to the best fusion point after analyzing the existing problems in soldier's occupational skill education and the features of ant algorithm and genetic algorithm, so as to urge the optimization results of ant algorithm to optimize the initializing population of genetic algorithm. In addition, in order to find the personalized learning path suited to every soldier, the personalized learning process of soldiers is transformed into a typical combinatorial optimization problem successfully by imitating traveling salesman problem. The experiment results show that the convergence rate and optimization capability of the improved ant colony genetic algorithm is greatly improved.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
李东,王虎强.基于动态蚁群遗传算法的士兵个性化学习.计算机系统应用,2015,24(11):204-208
LI Dong,WANG Hu-Qiang.Soldier's Personalized Learning Based on Dynamic Ant-Genetic Algorithm.COMPUTER SYSTEMS APPLICATIONS,2015,24(11):204-208