###
DOI:
计算机系统应用英文版:2015,24(8):176-180
本文二维码信息
码上扫一扫!
基于组合优化理论的用电量预测模型
(东北大学 信息学院, 沈阳 110819)
Electricity Consumption Prediction Based on Combination Optimization Theory
(College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1346次   下载 2371
Received:December 12, 2014    Revised:February 02, 2015
中文摘要: 为了提高用电量的预测精度, 提出了一种基于组合优化理论的用电量预测模型(AFSA-LSSVM). 首先相空间重构用电量学习样本, 然后将学习样本输入到最小二乘支持向量机进行训练, 并采用人工鱼群算法优化LSSVM参数, 建立最优的用电量预测模型, 最后采用仿真实验对模型性能进行测试. 结果表明, 相对于对比模型, AFSA-LSSVM可以准确刻画用电量的变化趋势, 提高用电量的预测精度, 预测结果更加可靠, 可以为决策者提供有价值决策信息.
Abstract:In order to improve the prediction precision, a novel electricity consumption prediction model is proposed based on combination optimization theory. Firstly, the learning samples is obtained by phase space reconstruction. Then the learning samples are input into least square support vector machine and train, which the parameters of model are optimized by artificial fish swarm algorithm, and electricity consumption prediction model is established. Finally, the performance of model is test by simulation experiment. The results show that the proposed model can describe electricity consumption change rule, and improve the prediction precision.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈景柱.基于组合优化理论的用电量预测模型.计算机系统应用,2015,24(8):176-180
CHEN Jing-Zhu.Electricity Consumption Prediction Based on Combination Optimization Theory.COMPUTER SYSTEMS APPLICATIONS,2015,24(8):176-180