###
DOI:
计算机系统应用英文版:2015,24(7):175-179
本文二维码信息
码上扫一扫!
结合信息融合和BP神经网络的决策算法
(1.浙江工业大学 信息工程学院, 杭州 310023;2.博格华纳汽车零部件宁波有限公司, 宁波 315000)
Decision-Making Algorithm Combining Information Fusion and BP Neural Network
(1.College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;2.BorgWarner Automotive Components Co., LTD, Ningbo 315000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1612次   下载 2966
Received:November 16, 2014    Revised:January 29, 2015
中文摘要: 针对网络输入信息复杂多变, 固定的BP(Back-Propagation)网络结构难以发挥其优势的情况, 提出了结合信息融合和BP神经网络的决策算法. 即根据输入的变化情况, 利用D-S证据理论(Dempster-Shafer,D-S)对BP神经网络的结构进行优选. 同时使用粒子群(PSO, Particle Swarm Optimization)算法来确定BP神经网络的初值, 以改善其收敛速度慢和容易陷入局部极小值的问题. 仿真结果显示, 结合信息融合和BP神经网络的决策算法和BP神经网络相比, 有效提高了BP神经网络训练的时间及预测的准确率, 在适应复杂多变的输入信息时具有一定的优势.
Abstract:The fixed BP (Back-Propagation) neural network structure can hardly play to its advantage when the input information become complicated and variable. So the decision- making algorithm is proposed, which combines information fusion with BP neural network. That is, using Dempster-Shafer(D-S) evidence theory to select the structure of BP neural network according to the changing input information. Simultaneously, the initial values are optimized by the Particle Swarm Optimization (PSO) algorithm to improve the problem of BP Neural Network's easily trapping into the local minimum and slow convergence rate. The simulation result shows that through the optimization of combined information fusion with BP neural network, the training time and prediction accuracy are more effective than that only using BP neural network, which has certain advantage of adapting to the complex and varied input information.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
沈永增,张坡,张彬棋,彭淑彦.结合信息融合和BP神经网络的决策算法.计算机系统应用,2015,24(7):175-179
SHEN Yong-Zeng,ZHANG Po,ZHANG Bin-Qi,PENG Shu-Yan.Decision-Making Algorithm Combining Information Fusion and BP Neural Network.COMPUTER SYSTEMS APPLICATIONS,2015,24(7):175-179