###
DOI:
计算机系统应用英文版:2015,24(6):188-192
本文二维码信息
码上扫一扫!
基于MapReduce的K_means并行算法及改进
(东北石油大学 计算机与信息技术学院, 大庆 163318)
Parallel K-Means Algorithm and Improved Based on MapReduce
(Northeast Petroleum University, College of Computer and Information Technology, Daqing 163318, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1274次   下载 2508
Received:October 11, 2014    Revised:November 13, 2014
中文摘要: 针对传统k_means聚类算法在处理海量数据时所面临的内存不足、运算速度慢等问题, 提出了一种基于MapReduce的K_means并行算法, 同时为了改善k_means算法在初始值确定方面的盲目性, 采用canopy算法进行改进. 实验结果表明, 基于MapReduce的K_means并行算法和改进后的算法均能产生良好的聚类效果, 不仅提高了聚类质量, 而且在处理大数据集方面, 改进后的算法的还能够得到趋近于线性的加速比.
中文关键词: MapReduce  k-means算法  canopy算法  并行计算  聚类
Abstract:In view of the problems that traditional k-means clustering algorithm faces in dealing with mass data, such as running out of memory, the operating in slow speed and so on, this paper proposes a parallel k-means algorithm based on MapReduce. At the same time, in order to overcome the blindness of the k-means algorithm in terms of determining the initial value, we use the canopy algorithm to improve the insufficient. The experimental results show that the parallel k-means algorithm based on MapReduce has an effect on clustering before and after the improvement, not only the quality of the clustering has been increased, but in terms of processing large datasets. The speed-up ratio of the improved algorithm can get closer to the linear.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
衣治安,王月.基于MapReduce的K_means并行算法及改进.计算机系统应用,2015,24(6):188-192
YI Zhi-An,WANG Yue.Parallel K-Means Algorithm and Improved Based on MapReduce.COMPUTER SYSTEMS APPLICATIONS,2015,24(6):188-192