本文已被:浏览 1297次 下载 2061次
Received:September 19, 2014 Revised:November 28, 2014
Received:September 19, 2014 Revised:November 28, 2014
中文摘要: 提出了一种基于区域协方差的车位状态监测识别方法. 车位状态监测识别的难点在于光线的变化、阴影、以及环境的干扰, 通过提取YCbCr色彩空间的亮度Y分量, 用Sobel算子获得各个像素点水平跟垂直方向的的亮度梯度, 进而构建特征向量, 然后用区域协方差矩阵来描述车位所在的区域, 最后用协方差矩阵的距离测度特性做出车位状态(空闲/占领)判决, 与以前的方法比较具有一次采集实现多车位识别的突出优点, 且该方法对光线不明感, 鲁棒性较强.
Abstract:In this paper, we proposed a method of parking space detection based on covariance matrix. The challenges of parking space detection come from luminance variation, shadow, and the interference of environment. For our solution, first of all, we extract Y-component from YCbCr color space, using Sobel operator for each pixel level with the brightness of the vertical gradient, and then construct the feature vector. Next, we use covariance matrix to describe a parking lot. Finally, we make parking state (free/occupied) with the distance of the covariance matrix measure characteristics. Compared with the previous methods, it has a great advantages of one-collection implement multiple identify parking Spaces, and a strong robustness.
keywords: YCbCr color space Sobel operator gradients of the luminance covariance Matrix distance- measure
文章编号: 中图分类号: 文献标志码:
基金项目:福建省产学科技重大项目(2013H61010023)
引用文本:
丁侨俊,蔡坚勇,陈顺凡,黄海涛,刘华锐,蔡娟.基于区域协方差的车位识别方法.计算机系统应用,2015,24(6):148-152
DING Qiao-Jun,CAI Jian-Yong,CHEN Shun-Fang,HUANG Hai-Tao,LIU Hua-Rui,CAI Juan.Texture-Based Covariance Matrix for Parking Lot.COMPUTER SYSTEMS APPLICATIONS,2015,24(6):148-152
丁侨俊,蔡坚勇,陈顺凡,黄海涛,刘华锐,蔡娟.基于区域协方差的车位识别方法.计算机系统应用,2015,24(6):148-152
DING Qiao-Jun,CAI Jian-Yong,CHEN Shun-Fang,HUANG Hai-Tao,LIU Hua-Rui,CAI Juan.Texture-Based Covariance Matrix for Parking Lot.COMPUTER SYSTEMS APPLICATIONS,2015,24(6):148-152