###
DOI:
计算机系统应用英文版:2015,24(2):224-228
本文二维码信息
码上扫一扫!
基于交互式的并行蚁群优化算法
(长安大学 信息工程学院, 西安 710064)
Interactive-Based Parallel Ant Colony Optimization
(College of Information Engineering, Chang'an University, Xi'an 710064, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1449次   下载 2392
Received:June 13, 2014    Revised:July 31, 2014
中文摘要: 传统蚁群优化算法研究已经取得了很多重要的成果, 但是在解决大规模组合优化问题时仍存在早熟收敛, 搜索时间长等缺点. 为此, 将邻域搜索技术与蚁群优化算法进行融合, 提出一种新的并行蚁群优化算法, 实验结果表明, 在解决大规模TSP问题时, 该算法求解质量和稳定性更好, 在短时间内即可得到较高质量的解.
Abstract:Although a lot of important results are achieved in the research of traditional ant colony optimization, and there are many shortcomings in solving large-scale combination optimization problems, such as premature convergence and time consuming. Therefore, a parallelization of ant colony algorithm based on the combination of neighborhood search algorithm and ant colony optimization is proposed and realized. The results of experiment show that the parallel algorithm has much higher quality and stability than that of traditional serial ant colony optimization for solving large-scale TSP problems.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
孟鑫,安毅生,张志明.基于交互式的并行蚁群优化算法.计算机系统应用,2015,24(2):224-228
MENG Xin,AN Yi-Sheng,ZHANG Zhi-Ming.Interactive-Based Parallel Ant Colony Optimization.COMPUTER SYSTEMS APPLICATIONS,2015,24(2):224-228