本文已被:浏览 1238次 下载 2911次
Received:April 10, 2014 Revised:May 15, 2014
Received:April 10, 2014 Revised:May 15, 2014
中文摘要: 分析了传统负荷预测方法的缺点, 提出了一种基于数据挖掘技术的负荷预测方法. 利用决策树算法进行负荷预测, 根据预测结果找出负荷不正常点. 依靠关联规则算法, 对不正常负荷进行修正, 从而使预测结果更加精确.
Abstract:Analyzing the shortcoming of traditional load forecast method, a method of load forecast based on data mining is put forward. Using the decision tree algorithm to make load forecasting, abnormal load data is found among the load forecasting results. This paper relies on association rules algorithm to modify the abnormal load, so that the load forecasting results will be more accurate.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
杨莉,李鹏举.基于数据挖掘的日负荷曲线预测与修正.计算机系统应用,2014,23(12):182-186
YANG Li,LI Peng-Ju.Forecasting and Modification of Daily Load Curve Based on Data Mining.COMPUTER SYSTEMS APPLICATIONS,2014,23(12):182-186
杨莉,李鹏举.基于数据挖掘的日负荷曲线预测与修正.计算机系统应用,2014,23(12):182-186
YANG Li,LI Peng-Ju.Forecasting and Modification of Daily Load Curve Based on Data Mining.COMPUTER SYSTEMS APPLICATIONS,2014,23(12):182-186