本文已被:浏览 1202次 下载 2190次
Received:March 13, 2014 Revised:April 14, 2014
Received:March 13, 2014 Revised:April 14, 2014
中文摘要: 由于不确定性数据大量存在于传感器网络, 移动计算, 军事, 电信等应用领域, 传统的频繁项集挖掘算法难以适用到不确定性数据挖掘. 为了解决这个问题, 本文提出了一种快速有效的算法, 该算法基于可能世界模型, 只需要扫描一次数据库, 且没有建树的过程, 通过实验证明, 我们提出的算法比UF_Growth算法效率更高.
Abstract:Uncertain data exists in many situations, such as sensor networks, mobile computing, military, telecommunications and other applications, which makes it difficult to apply traditional algorithms to mining frequent item sets. To deal with these situations, we propose an efficient algorithm based on possible world model with single scan of database. The algorithm works well without any tree construction. Experimental results show that the efficiency of our algorithm is better than UF_Growth.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
张常品,刘广钟.不确定性数据频繁项集挖掘算法.计算机系统应用,2014,23(11):160-164
ZHANG Chang-Pin,LIU Guang-Zhong.Algorithms of Frequent Item Sets Mining for Uncertain Data.COMPUTER SYSTEMS APPLICATIONS,2014,23(11):160-164
张常品,刘广钟.不确定性数据频繁项集挖掘算法.计算机系统应用,2014,23(11):160-164
ZHANG Chang-Pin,LIU Guang-Zhong.Algorithms of Frequent Item Sets Mining for Uncertain Data.COMPUTER SYSTEMS APPLICATIONS,2014,23(11):160-164