###
DOI:
计算机系统应用英文版:2014,23(10):188-182
本文二维码信息
码上扫一扫!
受限波兹曼机联合稀疏近似的脑功能检测模型
(上海海事大学 信息工程学院数字影像与智能计算实验室, 上海 201306)
Functional Connectivity Detection Method Based on Restricted Boltzmann Machine and Sparse Approximation
(Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1535次   下载 2771
Received:March 01, 2014    Revised:April 08, 2014
中文摘要: 人脑功能连通性检测是神经科学研究的重要技术. 使用受限制波兹曼机(Restricted Boltzmann Machine,RBM)对大量多被试功能磁共振(functional Magnetic Resonance Imaging,fMRI)数据进行建模可以检测人脑功能连接,但是不能有效检测单被试数据的功能连接. 本文研究一种新颖的融合了稀疏近似与RBM技术的脑功能连通性检测模型,该模型充分利用fMRI数据的稀疏性,采用稀疏近似理论对fMRI数据进行空间域稀疏近似压缩,然后使用RBM建立模型,以检测脑功能连通性. 实验结果表明,该融合模型可以有效地提取单被试数据的脑功能时间域混合模型及其相应的脑功能图谱,解决了RBM在单被试数据分析上的瓶颈.
Abstract:The human brain functional connectivity detection is an important technique in neuroscience research. The restricted boltzmann machine (RBM), modeling on a large amount of multi-subject functional magnetic resonance imaging (fMRI) data, it can discover the brain functional connectivity. However, the former method with restriction of the huge training data, it can not detect the functional connectivity on single-subject data effectively. In this research, a novel functional connectivity detection model taking advantage of the sparsity is presented, which is an effective combination of the spatial-domain sparse approximation theory and the RBM technique. The experimental results demonstrated that the proposed model could effectively discover both the temporal dynamic model and the corresponding spatial functional maps on the single-subject data, which settled the the bottleneck of RBM.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(31170952)
引用文本:
景艳山,曾卫明,王倪传.受限波兹曼机联合稀疏近似的脑功能检测模型.计算机系统应用,2014,23(10):188-182
JING Yan-Shan,ZENG Wei-Ming,WANG Ni-Zhuan.Functional Connectivity Detection Method Based on Restricted Boltzmann Machine and Sparse Approximation.COMPUTER SYSTEMS APPLICATIONS,2014,23(10):188-182