###
DOI:
计算机系统应用英文版:2014,23(10):138-141
本文二维码信息
码上扫一扫!
半监督边缘判别嵌入与局部保持的维度约简
(惠州学院 计算机科学系, 惠州 516007)
Semi Supervised Marginal Discriminant Embedding and Local Preserving for Dimensionality Reduction
(Department of Computer Science, Huizhou University, Huizhou 516007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1259次   下载 2337
Received:February 15, 2014    Revised:March 17, 2014
中文摘要: 为了对高维数据进行降维处理,提出了半监督学习的边缘判别嵌入与局部保持的维度约简算法. 通过最小化样本与其所属类别的中心点之间的距离,使得样本在投影子空间中能够保持其领域的拓扑结构;再通过最大化不同类别边缘间的距离,使得类别间的分离度在投影子空间中得到增强. 实验结果表明: 半监督边缘判别嵌入与局部保持的维度约简算法能够获得初始特征空间的较好的投影子空间.
中文关键词: 降维  半监督学习  局部保持  分类  机器学习
Abstract:In order to reduce the dimension of high-dimensional data, raised edge semi-supervised marginal discriminant embedding and local preserving algorithm for dimensionality reduction is proposed. By minimizing the distance between sample and the center of its category, the local topology of samples is maintained in the projection subspace. And by maximizing the distance between the edges of different categories, the inter scatter of classes is increased in the projection subspace. Experimental results show that the dimensionality reduction algorithm of semi supervised marginal discriminant embedding and local preserving can get a better projection subspace of the initial feature space.
文章编号:     中图分类号:    文献标志码:
基金项目:惠州市科技计划(2011B020006002,2013w10,2012B020004005,2013W15,A511.0220);惠州学院校立自然科学基金(2012YB14)
引用文本:
兰远东,高蕾,曾少宁,曾树洪.半监督边缘判别嵌入与局部保持的维度约简.计算机系统应用,2014,23(10):138-141
LAN Yuan-Dong,GAO Lei,ZENG Shao-Ning,ZENG Shu-Hong.Semi Supervised Marginal Discriminant Embedding and Local Preserving for Dimensionality Reduction.COMPUTER SYSTEMS APPLICATIONS,2014,23(10):138-141