本文已被:浏览 1259次 下载 2337次
Received:February 15, 2014 Revised:March 17, 2014
Received:February 15, 2014 Revised:March 17, 2014
中文摘要: 为了对高维数据进行降维处理,提出了半监督学习的边缘判别嵌入与局部保持的维度约简算法. 通过最小化样本与其所属类别的中心点之间的距离,使得样本在投影子空间中能够保持其领域的拓扑结构;再通过最大化不同类别边缘间的距离,使得类别间的分离度在投影子空间中得到增强. 实验结果表明: 半监督边缘判别嵌入与局部保持的维度约简算法能够获得初始特征空间的较好的投影子空间.
Abstract:In order to reduce the dimension of high-dimensional data, raised edge semi-supervised marginal discriminant embedding and local preserving algorithm for dimensionality reduction is proposed. By minimizing the distance between sample and the center of its category, the local topology of samples is maintained in the projection subspace. And by maximizing the distance between the edges of different categories, the inter scatter of classes is increased in the projection subspace. Experimental results show that the dimensionality reduction algorithm of semi supervised marginal discriminant embedding and local preserving can get a better projection subspace of the initial feature space.
keywords: dimensionality reduction semi supervised learning local preserving classification machine learning
文章编号: 中图分类号: 文献标志码:
基金项目:惠州市科技计划(2011B020006002,2013w10,2012B020004005,2013W15,A511.0220);惠州学院校立自然科学基金(2012YB14)
引用文本:
兰远东,高蕾,曾少宁,曾树洪.半监督边缘判别嵌入与局部保持的维度约简.计算机系统应用,2014,23(10):138-141
LAN Yuan-Dong,GAO Lei,ZENG Shao-Ning,ZENG Shu-Hong.Semi Supervised Marginal Discriminant Embedding and Local Preserving for Dimensionality Reduction.COMPUTER SYSTEMS APPLICATIONS,2014,23(10):138-141
兰远东,高蕾,曾少宁,曾树洪.半监督边缘判别嵌入与局部保持的维度约简.计算机系统应用,2014,23(10):138-141
LAN Yuan-Dong,GAO Lei,ZENG Shao-Ning,ZENG Shu-Hong.Semi Supervised Marginal Discriminant Embedding and Local Preserving for Dimensionality Reduction.COMPUTER SYSTEMS APPLICATIONS,2014,23(10):138-141