###
DOI:
计算机系统应用英文版:2014,23(9):182-185
本文二维码信息
码上扫一扫!
基于二次精简的散乱点云精简方法
(1.合肥工业大学 仪器科学与光电工程学院, 合肥 230039;2.中国科学院 光电研究院, 北京 100094)
Method of Scattered Point Cloud Reduction Based on Quadratic Reduction
(1.School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China;2.Academy of Opto-electronics, Chinese Academy of Sciences, Beijing 100094, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1815次   下载 3357
Received:December 31, 2013    Revised:February 19, 2014
中文摘要: 在逆向工程中,点云精简是一个重要的步骤,精简的质量直接关系到后续曲面重构的效率. 分析了常用的几种点云精简方法,并针对现有方法的不足,提出一种改进的方法. 该方法使用PCA 主成分析法,利用点的k邻域点集拟合切平面,将点到该平面距离作为判断特征点的依据进行初始精简,再利用均匀网格的方法对初始精简后的点云进行重采样处理,保留部分关键特征点. 通过初始精简和后期精简两步法完成对点云的精简步骤,并通过实验验证了该方法的有效性.
Abstract:Point cloud reduction is an important step of reverse engineering. The quality of reduction is directly related to the efficiency of subsequent surface reconstruction. This paper analysed several commonly used methods of point cloud reduction and proposed an improved method against the lacks of existing methods. This method uses the PCA principal component analysis to fit tangent plane with K-Nearest Neighbour points. It calculates the distance between the point and the plane as the basis for initial reduction. Then it uses uniform grid for resampling process to retain some feature points. Through initial reduction and quadratic reduction to finish point cloud reduction. At last, it validates the effectiveness of the method with experiments.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
叶冬荣,李维诗,张滋黎,周维虎.基于二次精简的散乱点云精简方法.计算机系统应用,2014,23(9):182-185
YE Dong-Rong,LI Wei-Shi,ZHANG Zi-Li,ZHOU Wei-Hu.Method of Scattered Point Cloud Reduction Based on Quadratic Reduction.COMPUTER SYSTEMS APPLICATIONS,2014,23(9):182-185