###
DOI:
计算机系统应用英文版:2014,23(8):114-118
本文二维码信息
码上扫一扫!
基于视觉显著性特征的遥感影像道路网提取方法
(信息工程大学 地理空间信息学院, 郑州 450052)
Road Network Extraction Method from Remote Sensing Images Based on Saliency
(Institute of Geography Space Information, Information Engineering University, Zhengzhou 450052, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1678次   下载 2907
Received:December 06, 2013    Revised:January 31, 2014
中文摘要: 在遥感影像上,道路被认为是颜色、纹理、形状相似的狭长线状目标,基于此特征可知,整个道路网在影像上会呈现非常显著的特征,极易引起人眼的注意,我们称之为感兴趣区域.感兴趣区域是场景中最能引起用户兴趣、体现图像主要内容的区域,视觉认知理论的研究表明:通过视觉注意机制可以模拟人眼的观察过程,找出遥感影像上的显著区域.本文提出应用视觉注意机制辅助遥感影像道路网提取的思想,通过对影像的显著区域进行分析和处理,得到最终的道路网.对比实验表明该算法可以有效的提高道路网提取的准确率和完整性.
Abstract:In the remote sensing images, roads are considered to be the long and narrow linear target which is similar in color, texture and shape. Based on these features, the entire road network in the image will show a very significant feature, which can easily excite the attention of the human, which can be called the region of interest. The region of interest(ROI) in the scene can cause the most interesting of users, which reflects the main content of the image area, visual cognitive theory study shows that the visual attention mechanism can simulate the observation processing of the human eye to identify the salient region of remote sensing images. This paper proposes the idea of using visual attention mechanisms to assist road network extraction by analysising and processing the salient region and get the final road network. Comparative experiments show that the algorithm can effectively improve the accuracy and integrity of the road network extraction.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
李润生,曹闻.基于视觉显著性特征的遥感影像道路网提取方法.计算机系统应用,2014,23(8):114-118
LI Run-Sheng,CAO Wen.Road Network Extraction Method from Remote Sensing Images Based on Saliency.COMPUTER SYSTEMS APPLICATIONS,2014,23(8):114-118