###
DOI:
计算机系统应用英文版:2014,23(6):187-190
本文二维码信息
码上扫一扫!
结合形态学的结构化车道线快速识别算法
(1.太原科技大学 电子信息工程学院, 太原 030024;2.太原科技大学 教育信息技术中心, 太原 030024;3.太原科技大学 交通与物流学院, 太原 030024)
Fast Detection Algorithm for Structured Lane with the Morphology
(1.School of Electronic and Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2.Information Technology Center of Education, Taiyuan University of Technology, Taiyuan 030024, China;3.School of Transportation and Logistics, Taiyuan University of Technology, Taiyuan 030024, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1304次   下载 3288
Received:October 24, 2013    Revised:November 18, 2013
中文摘要: 为解决结构化车道线识别算法中存在的约束条件多,计算过于复杂等问题,提出一种基于形态学的车道线快速识别算法. 该算法首先对道路图像进行中值滤波,Sobel算子增强边缘,利用直方图特征分割图像,然后划分感兴趣区域,接着构造具有车道特征的形态学结构元素去提取车道线,最后概率霍夫变换拟合车道线. 实验对比结果表明,针对结构化道路,该算法简单有效,计算量小,具有良好的实时性.
Abstract:In order to solve the problem in the structured lane recognition algorithm which includes many constraints and complicated calculation, this paper presents a fast lane detection algorithm based on morphology. Firstly, this work gets pre-process in road image by handled Median filter. Sobel operator is to enhance edge. A characteristic histogram threshold method is adopted to segment images. And region of interest is disposed with the detection results. Secondly, by constructing morphological structure elements with the feature of lane start to extract the lane line. Finally, Hough transform have been fitting with the best line of lane. The contrast experiment shows that algorithm provides a high real-time, less calculation and simple and effective approach to structured lane.
文章编号:     中图分类号:    文献标志码:
基金项目:太原科技大学校级创新基金(20125007)
引用文本:
陈功醇,马玉贤,贾志绚.结合形态学的结构化车道线快速识别算法.计算机系统应用,2014,23(6):187-190
CHEN Cong-Chun,MA Yu-Xian,JIA Zhi-Xuan.Fast Detection Algorithm for Structured Lane with the Morphology.COMPUTER SYSTEMS APPLICATIONS,2014,23(6):187-190