###
DOI:
计算机系统应用英文版:2014,23(5):227-230
本文二维码信息
码上扫一扫!
基于一阶马尔可夫链的实验数据序列分类模型
(广东女子职业技术学院 信息资源中心, 广州 511450)
Sequence Classifying Model of Experimental Data Based on First Order Markov Chain
(Information Resource Center, Guangdong Women's Polytechnic College, Guangzhou 511450, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1932次   下载 3496
Received:September 22, 2013    Revised:October 18, 2013
中文摘要: 为了对在线实验系统产生的实验数据序列进行分析,引入一阶马尔可夫链. 通过人工分类把实验数据分为学习积极和懒散作弊两类,分别构建马尔可夫链模型. 根据输出概率判定测试数据来自哪一个模型的可能性较大. 最后讨论了状态的平稳分布情况. 实验结果表明,基于马尔可夫链的分类模型具有较高的正确率.
Abstract:In order to analysis the sequence data generated by online experimental system, the first-order Markov chain is introduced. It artificially classifies the experimental data into the learning initiative and fraud, and constructs two Markov chain models. It determines by the larger possibility from which model the test data comes. At the end, it discusses the steady state distribution. Experimental results show that the model based on Markov chain has higher classification accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省教育科学规划信息技术专项(12JXN036)
引用文本:
黄志成.基于一阶马尔可夫链的实验数据序列分类模型.计算机系统应用,2014,23(5):227-230
HUANG Zhi-Cheng.Sequence Classifying Model of Experimental Data Based on First Order Markov Chain.COMPUTER SYSTEMS APPLICATIONS,2014,23(5):227-230