本文已被:浏览 2526次 下载 4916次
Received:September 12, 2013 Revised:November 18, 2013
Received:September 12, 2013 Revised:November 18, 2013
中文摘要: 社交网络、生物信息网络等链接关系数据呈现爆炸性增加,对亿万个顶点级别的大图处理需求愈加迫切,传统的图算法对单点内存的计算依赖性已经不能满足数据规模急速增长的需求. 本文针对图的弱连通分量求解问题,提出了一种快速、可扩展的迭代染色算法CR,并建立了算法的MapReduce模型. 最后,在Hadoop平台上,对斯坦福大学社会网络分析实验室提供的四组通联数据进行测试,并和开源的数据挖掘工具箱XRIME提供的算法进行了对比.
Abstract:With the explosively increase of social networking, bioinformatics network and other relational datas. It is urgent to improve the processing capability on large scale graphs with billions of vertices. The traditional graph algorithms can no longer meet the rapidly growing demand for the calculate dependence of the memory. To find the Weakly Connected Components of a graph, this paper presented a fast, scalable and iterable coloring algorithm CR and also established the MapReduce model. At last, we give out a contrast experiment between the open-source data mining toolbox XRIME and CR on four sets of communication data, which is provided by the Social Network Analysis Laboratory in Stanford University.
keywords: weakly connected components CR MapReduce XRIME
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
肖有诰,谭菊仙,李璞.基于染色的分布式弱连通分量求解算法.计算机系统应用,2014,23(5):107-111
XIAO You-Gao,TAN Ju-Xian,LI Pu.Distributed Coloring Algorithm for Weakly Connected Components.COMPUTER SYSTEMS APPLICATIONS,2014,23(5):107-111
肖有诰,谭菊仙,李璞.基于染色的分布式弱连通分量求解算法.计算机系统应用,2014,23(5):107-111
XIAO You-Gao,TAN Ju-Xian,LI Pu.Distributed Coloring Algorithm for Weakly Connected Components.COMPUTER SYSTEMS APPLICATIONS,2014,23(5):107-111