###
DOI:
计算机系统应用英文版:2014,23(4):125-130
本文二维码信息
码上扫一扫!
基于改进AHP和SVR的油田产能建设项目综合后评价模型
(1.东北石油大学 计算机与信息技术学院, 大庆 163318;2.东方地球物理勘探有限公司, 涿州 072750;3.大庆金桥信息技术工程有限公司, 大庆 163318)
Comprehensive Post Evaluation Model for the Productive Capacity Construction Project of Oilfield Based on the Improved AHP and SVR
(1.School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China;2.BGP ING., China National Petroleum Corporation., Zhuozhou 072750, China;3.Daqing Golden Bridge Information Technology Engineering Co.Ltd., Daqing 163318, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1413次   下载 2633
Received:August 30, 2013    Revised:November 04, 2013
中文摘要: 根据油田产能建设项目后评价的特点以及吉林油田的实际情况,详细分析油田产能建设项目后评价中的评价指标、各指标间的关系以及对最终综合后评价的影响,提出了一种基于改进层次分析法(AHP)和支持向量机回归(SVR)的综合后评价模型. 利用改进AHP法确定综合后评价指标体系中各个评价指标权重,然后通过SVR进行综合后评价,以提评价结果的精确度. 该模型不仅弥补了人为主观估计权重的缺陷,并且考虑到各评价指标对综合后评价结果的影响,科学并客观的对产能建设项目进行综合后评价,实验结果验证了该方法的有效性.
Abstract:According to the characteristics of post evaluation for the productive capacity construction project of oilfield and the actual situation of Jilin Oilfield, our work detailed analyzed the evaluation index, the relationship and the impact to the Comprehensive Post Evaluation of the post evaluation for the productive capacity construction project of oilfield. This paper proposed the comprehensive post evaluation model based on the improved AHP and SVR. We used the improved AHP to determine the weights of the evaluation index. We evaluated it through the SVR, to improve the classification accuracy and precision of the results. This model not only to make up for the defects of the subjective estimation weights, but taking into account the effect, evaluating scientifically and objectively, the experimental results demonstrated the effectiveness of the method.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61170132);国家重大专项(2011ZX05020-007);黑龙江省教育厅科学技术研究项目(12521055)
引用文本:
尚福华,马明梅,陈效果,杜睿山,杨慧.基于改进AHP和SVR的油田产能建设项目综合后评价模型.计算机系统应用,2014,23(4):125-130
SHANG Fu-Hua,MA Ming-Mei,CHEN Xiao-Guo,DU Rui-Shan,YANG Hui.Comprehensive Post Evaluation Model for the Productive Capacity Construction Project of Oilfield Based on the Improved AHP and SVR.COMPUTER SYSTEMS APPLICATIONS,2014,23(4):125-130