###
DOI:
计算机系统应用英文版:2014,23(2):160-165,69
本文二维码信息
码上扫一扫!
基于多类合并的PSO-means聚类算法
(宁波大学科技学院, 宁波 315212)
K-means Optimization Clustering Algorithm Based on Particle Swarm Optimization and Multi-Groups Merging
(College of Science and Technology, Ningbo University, Ningbo 315212, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2506次   下载 3278
Received:July 12, 2013    Revised:September 22, 2013
中文摘要: 针对传统K-means算法中对初始化聚类中心敏感,容易陷入局部极小值等缺点,提出了一种基于粒子群算法和多类合并方法的新型K-means聚类算法。该算法首先利用改进粒子群算法选取初始聚类中心,然后利用K-means算法进行优化聚类,最后根据多类合并条件进行聚类合并,以获取最佳聚类结果。实验结果证明,该算法能有效解决传统K-means算法存在的缺陷,具有更快的收敛速度及更好的全局搜索能力,聚类划分效果更优。
Abstract:To deal with the problem of the sensitivity of initialization and premature convergence, this paper proposes a novel K-means optimization clustering algorithm based on particle swarm optimization and multi-groups merging, namely M-PSO-Means. Firstly the algorithm selects the initial cluster center by improving particle swarms clustering algorithm under default number of clustering, then optimizes the clustering, and last carries out cluster merging based on multi-groups merging condition to obtain the best clustering results. The experimental results show that, the algorithm can effectively solve the defects of K-means algorithm, and has a faster convergence rate and better global search ability, as well as better cluster category effect.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省教育厅科研项目(Y201326770);宁波大学科研基金项目(XYL12009);浙江省教育厅科研项目(Y201326872);浙江省2011年度大学生新苗人才计划项目
引用文本:
林有城,符强,谢文斌,史马杰,童楠.基于多类合并的PSO-means聚类算法.计算机系统应用,2014,23(2):160-165,69
LIN You-Cheng,FU Qiang,XIE Wen-Bin,SHI Ma-Jie,TONG Nan.K-means Optimization Clustering Algorithm Based on Particle Swarm Optimization and Multi-Groups Merging.COMPUTER SYSTEMS APPLICATIONS,2014,23(2):160-165,69