本文已被:浏览 1547次 下载 3830次
Received:May 05, 2013 Revised:June 07, 2013
Received:May 05, 2013 Revised:June 07, 2013
中文摘要: 针对目标跟踪中粒子滤波算法的估计精度不高、粒子退化问题,文中提出了一种GH-RPF算法. 在粒子滤波的基础上,应用高斯-厄米特滤波来产生重要密度函数,同时对重采样采用正则变换以改善采样粒子的多样性. 将该算法应用于非线性、非高斯的目标跟踪中,仿真结果表明,与标准粒子滤波及EKPF相比,该算法的滤波精度更高,具有更高的跟踪性能.
Abstract:In view of the low precision of particle filter algorithm and particle degradation in target tracking, a GH-RPF algorithm is put forward. Based on particle filter, Gauss-Hermite filter is applied to generate the importance density function, and meanwhile canonical transformation is adopted to re-sampling in order to improve the diversity of particles. If the algorithm is applied to nonlinear and non-Gaussian target tracking, it can be seen from the simulation result that the filtering accuracy is higher and tracking performance is better compared to the standard particle filter algorithm as well as EKPF.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
张军,所玉君,董小丰,张玉朋.改进粒子滤波算法及其应用仿真.计算机系统应用,2013,22(12):104-107
ZHANG Jun,SUO Yu-Jun,DONG Xiao-Feng,ZHANG Yu-Peng.Improved Particle Filter Algorithm and Application Simulation.COMPUTER SYSTEMS APPLICATIONS,2013,22(12):104-107
张军,所玉君,董小丰,张玉朋.改进粒子滤波算法及其应用仿真.计算机系统应用,2013,22(12):104-107
ZHANG Jun,SUO Yu-Jun,DONG Xiao-Feng,ZHANG Yu-Peng.Improved Particle Filter Algorithm and Application Simulation.COMPUTER SYSTEMS APPLICATIONS,2013,22(12):104-107