本文已被:浏览 4078次 下载 2431次
Received:March 19, 2013 Revised:April 27, 2013
Received:March 19, 2013 Revised:April 27, 2013
中文摘要: Carrousel氧化沟广泛应用于城市污水处理, 但污水处理的效果受到水质和环境因素影响很大, 难以建立精确的预测模型. 现有的机器学习方法普遍预测效果较差, 为了准确预报污水处理的效果, 本文采用多核小波支持向量机进行建模, 实验表明该方法提高了预报的精确度, 适合用于氧化沟系统的实时在线预测.
中文关键词: 多核支持向量机 SILP算法 SimpleMKL算法 小波核函数 氧化沟系统
Abstract:Carrousel oxidation ditch has been widely used in sewage disposal system, however the result of sewage disposal was affected by water quality and environmental factors, so it is difficult to build a precise prediction model. The existing method of machine learning algorithm usually gets a poor result in prediction. In order to precisely predict the result, this essay uses the multi-kernel wavelet support vector machine when build a model. The outcome of this experiment demonstrates that the new method improve the degree of definition in forecasting, and it is suitable for actually online prediction.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(41171341)
引用文本:
何渊淘,刘超慧.多核小波支持向量机在Carrousel氧化沟系统的应用.计算机系统应用,2013,22(10):203-205,197
HE Yuan-Tao,LIU Chao-Hui.Application of Wavelet Multi Kernel Learning on Carrousel Oxidation Ditch System.COMPUTER SYSTEMS APPLICATIONS,2013,22(10):203-205,197
何渊淘,刘超慧.多核小波支持向量机在Carrousel氧化沟系统的应用.计算机系统应用,2013,22(10):203-205,197
HE Yuan-Tao,LIU Chao-Hui.Application of Wavelet Multi Kernel Learning on Carrousel Oxidation Ditch System.COMPUTER SYSTEMS APPLICATIONS,2013,22(10):203-205,197