###
DOI:
计算机系统应用英文版:2013,22(5):81-84
本文二维码信息
码上扫一扫!
基于粒子群算法的煤气化过程LS_SVM预测模型
(1.西安科技大学理学院, 西安 710054;2.黄河上游水电开发有限责任公司, 西宁 810000)
Coal Gasification LS_SVM Forecasting Model Based on Particle Swarm Algorithm
(1.School of College of Science, Xi'an University and Technology, Xi'an Shanxi 710054, China;2.Huanghe Hydropower Development CO., LTD., Xining Qinghai 810000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1995次   下载 2767
Received:October 11, 2012    Revised:November 26, 2012
中文摘要: 针对最小二乘支持向量机参数选择对模型性能的重要影响, 并且以往的参数优选方法效果差且耗时长这一问题, 提出基于粒子群算法优化最小二乘支持向量机预测模型. 该模型用最小二乘支持向量机理论建立, 用粒子群算法优化模型参数. 论文将此模型用于预测评价固定床煤气化气化效果的三个主要性能指标(气体热值、气化效率、气体产率), 通过现场实际数据仿真结果表明, 该算法有效地提高了模型预测精度, 验证了此模型的可靠性和可用性.
Abstract:According to the least squares support vector machine (LS_SVM) parameter selection has important influence on the model of performance, and conventional parameter optimization methods' effect is poor and time-consuming, this paper present a least squares support vector machine prediction model which based on particle swarm algorithm. The model based on least squares support vector machine theories, and with particle swarm algorithm to optimize the model parameters. In this paper we use the model to predict three main performance indexes of evaluating coal gasification effect of the fixed bed (gas heating value, gasification efficiency, gas production rate), through the practical data's simulation results show that the algorithm can effectively improve the prediction accuracy of the model, and the model's reliability and usability has been verified.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
谢文君,曹根牛,李怀毅.基于粒子群算法的煤气化过程LS_SVM预测模型.计算机系统应用,2013,22(5):81-84
XIE Wen-Jun,CAO Gen-Niu,LI Huai-Yi.Coal Gasification LS_SVM Forecasting Model Based on Particle Swarm Algorithm.COMPUTER SYSTEMS APPLICATIONS,2013,22(5):81-84