###
DOI:
计算机系统应用英文版:2012,21(10):224-229
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
数据挖掘中适用于分类的时序数据特征提取方法
(1.广东省计算中心, 广州 510033;2.广东工业大学 自动化学院, 广州 510006)
Survey of Feature Extraction Approaches for Time Series Classification
(1.Guangdong Computer Center, Guangzhou 510033, China;2.Guangdong University of Technology, Guangzhou 510006, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2526次   下载 14427
Received:February 06, 2012    Revised:March 04, 2012
中文摘要: 特征提取在提高分类的准确性中起着非常关键的作用. 对时序特征提取的方法进行归纳分类, 将有利于对特征提取整体性, 全面性的认识. 回顾现有的时间序列中特征提取的方法, 将其总结为四大类, 它们分别是基于基本统计方法的特征提取、基于模型的特征提取、基于变换的特征提取、基于分形维数的特征提取. 针对每一类的特征提取方法, 进一步研究了它相应的分类方法和它在时间序列数据中的应用邻域.
中文关键词: 时序数据  分类  特征提取
Abstract:The main contributions of this paper are: 1) The main feature extraction approaches are classified into four categories; 2) The main idea of each category is analyzed, the advantages and disadvantages are pointed out; 3) The guidelines of choosing suitable feature extraction approach is suggested.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省科技计划项目基金(2011B060500049, 2010B090400545, 2010A040300006)
引用文本:
林珠,邢延.数据挖掘中适用于分类的时序数据特征提取方法.计算机系统应用,2012,21(10):224-229
LIN Zhu,XING Yan.Survey of Feature Extraction Approaches for Time Series Classification.COMPUTER SYSTEMS APPLICATIONS,2012,21(10):224-229