###
DOI:
计算机系统应用英文版:2012,21(10):126-129
本文二维码信息
码上扫一扫!
改进的FCM算法及其应用
(辽宁工程技术大学 理学院, 阜新 123000)
Improved FCM Algorithm and Its Application
(College of Science, Liaoning Technical University, Fuxin 123000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1486次   下载 3924
Received:November 10, 2011    Revised:April 02, 2012
中文摘要: 模糊C 均值聚类算法是一种普遍应用的经典聚类算法, 在数据的分析方面有良好的表现, 但是算法的缺陷严重的限制了算法的应用和发展. 制药过程是一个十分复杂的综合系统, 被控参数情况也十分复杂, 因为有关联性和并且存在过失误差, 针对这些问题把模糊C均值算法应用到动态递归模糊神经网络预测控制当中. 利用改进的PSO 算法对模糊C 均值算法进行优化, 对数据的聚类辨识从而同步实现系统控制和异常预警, 保证系统稳定性.
Abstract:Fuzzy C-Means clustering algorithm is a classical clustering algorithm, which is widely used in data analysis and performs well. However, serious defects in the algorithm limit the application of the algorithm and development. Pharmaceutical process is a very complex integrated system, whose parameters are very complicated accused of the relevance and existence of fault and error. For these issues, the Fuzzy C-Means algorithm is applied to dynamic recurrent fuzzy neural network predictive control. Improve Fuzzy C-Means algorithm with IPSO algorithm to do the clustering of data and failure pattern recognition of system to achieve the early warning and ensure system stability.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
张忠厚,赵龙.改进的FCM算法及其应用.计算机系统应用,2012,21(10):126-129
ZHANG Zhong-Hou,ZHAO Long.Improved FCM Algorithm and Its Application.COMPUTER SYSTEMS APPLICATIONS,2012,21(10):126-129