本文已被:浏览 2195次 下载 3570次
Received:December 14, 2011 Revised:February 16, 2012
Received:December 14, 2011 Revised:February 16, 2012
中文摘要: 针对基本遗传算法存在容易“早熟”, 无法全局收敛的现象, 设计了一种新交叉算子和变异算子, 并在遗传算子构造中引入贪心控制策略. 新算子的引入丰富了种群的多样性, 提高了算法的全局搜索能力. 实例仿真表明, 改进遗传算法在迭代陷入局部最优时, 能在较短的时间内跳出局部最优, 继续寻找全局最优解.
Abstract:Premature convergence usually appears in basic genetic algorithm. So, new crossover and mutation operators are designed. Greedy strategy is introduced in construction of genetic operator. Diversity of population becomes Rich because of introduction of new operators. New algorithm improves the ability of global search. The simulation indicates that the improved genetic algorithm can jump out of local optimum in a short time, and continue seeking the optimum.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(50904032);湛江师范学院青年基金(QW0712)
引用文本:
张家善,王志宏,陈应显,林晓群.一种求解旅行商问题的改进遗传算法.计算机系统应用,2012,21(9):192-194,191
ZHANG Jia-Shan,WANG Zhi-Hong,CHEN Ying-Xian,LIN Xiao-Qun.Improved Genetic Algorithm for Traveling Salesman Problem.COMPUTER SYSTEMS APPLICATIONS,2012,21(9):192-194,191
张家善,王志宏,陈应显,林晓群.一种求解旅行商问题的改进遗传算法.计算机系统应用,2012,21(9):192-194,191
ZHANG Jia-Shan,WANG Zhi-Hong,CHEN Ying-Xian,LIN Xiao-Qun.Improved Genetic Algorithm for Traveling Salesman Problem.COMPUTER SYSTEMS APPLICATIONS,2012,21(9):192-194,191