本文已被:浏览 1752次 下载 3177次
Received:December 25, 2011 Revised:February 16, 2012
Received:December 25, 2011 Revised:February 16, 2012
中文摘要: SIFT (Scale Invariant Feature Transform)是目前最流行的局部特征提取及匹配算法. 但传统SIFT算法采用欧氏距离来度量特征之间的SSD(Sum of Square Differences)并进行匹配, 而传统的欧氏距离不能使高维特征向量恢复到具有低维的几何结构, 导致错误匹配. 为了克服这缺点, 利用扩散距离代替欧氏距离进行匹配, 然后使用随机抽样一致从候选匹配中排除错误的匹配. 实验表明: 该方法在图像形变、光照变化和图像噪声方面优于原方法.
Abstract:The SIFT(Scale Invariant Feature Transform) algorithm is now regarded as the best local feature extraction and matching algorithm. However, in the traditional SIFT algorithm, the Euclidean distance which could not change the high-dimensional feature vector into a low-dimensional geometry structure is used to measure the SSD(Sum of Square Differences) between two image features to match and results into mismatching. To overcome the shortcoming, an SIFT matching algorithm based on diffusion distance is proposed in this paper which replaces the Euclidean distance with the diffusion one. At the same time, RANSAC(Random Sample Consensus) is presented to exclude the mismatching points. Experimental results show that the proposed algorithm has more efficiency to deal with image deformation, illumination change and image noise than the traditional one.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金项目(60805016);高等学校博士学科点专项科研基金新教师基金课题(200807181007);陕西省科技计划项目(2011JM8014);中国博士后科学基金特别资助(200902594);陕西师范大学中央高校基本科研业务费专项资金(GK201002016);大学生创新性实验计划项目(1110718026)
引用文本:
胡刚,刘侍刚,吴清亮,王刚.基于扩散距离的SIFT特征匹配算法.计算机系统应用,2012,21(9):92-96,52
HU Gang,LIU Shi-Gang,WU Qing-Liang,WANG Gang.SIFT Matching Algorithm Based on Diffusion Distance.COMPUTER SYSTEMS APPLICATIONS,2012,21(9):92-96,52
胡刚,刘侍刚,吴清亮,王刚.基于扩散距离的SIFT特征匹配算法.计算机系统应用,2012,21(9):92-96,52
HU Gang,LIU Shi-Gang,WU Qing-Liang,WANG Gang.SIFT Matching Algorithm Based on Diffusion Distance.COMPUTER SYSTEMS APPLICATIONS,2012,21(9):92-96,52