###
DOI:
计算机系统应用英文版:2012,21(7):244-248
本文二维码信息
码上扫一扫!
一种求解组卷问题的量子粒子群算法
(1.中北大学 电子与计算机科学技术学院,太原 030051;2.中北大学 仪器科学与动态测试教育部重点试验室,太原 030051)
Quantum-Behaved Particle Swarm Algorithm on Autogenerating Test Paper
(1.College of Computer Science and Technology, North University of China, Taiyuan 030051, China;2.Ministry of Education Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China,Taiyuan 030051,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2142次   下载 3022
Received:November 10, 2011    Revised:December 10, 2011
中文摘要: 为提高智能组卷的效率,提出一种求解组卷问题的带自适应变异的量子粒子群优化(AMQPSO)算法。首先在算法中嵌入有效判断早熟停滞的方法,一旦检索到早熟迹象,根据构造的变异概率对粒子进行变异使粒子跳出局部最优;其次基于项目反应理论,构建分步组卷问题的数学模型,减少组卷冗余度和提高组卷效率。仿真实验表明,与遗传算法相比,所提出的算法在组卷成功率和组卷质量方面均具有更好的性能。
Abstract:This paper puts forward an adaptive mutation of the quantum particle swarm optimization (AMQPSO) algorithm in order to improve the efficiency of autogenerating test paper. Firstly, a method of effective premature and stagnation judgement is embedded in the algorithm. Once premature signs are retrieved, the algorithm mutates particles to jump out of the local optimum particle according to the structure mutation. Secondly, the algorithm constructs a mathematical model of autogenerating test paper in steps based on Item Response Theory to reduce redundancy and improve the efficiency of autogenerating. Simulation results showed that compared with the genetic algorithm, the proposed algorithm is of better performance in both success rate and quality of autogenerating test paper.
文章编号:     中图分类号:    文献标志码:
基金项目:中北大学教改基金(2010-6)
引用文本:
李欣然,靳雁霞.一种求解组卷问题的量子粒子群算法.计算机系统应用,2012,21(7):244-248
LI Xin-Ran,JIN Yan-Xia.Quantum-Behaved Particle Swarm Algorithm on Autogenerating Test Paper.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):244-248