本文已被:浏览 2142次 下载 3022次
Received:November 10, 2011 Revised:December 10, 2011
Received:November 10, 2011 Revised:December 10, 2011
中文摘要: 为提高智能组卷的效率,提出一种求解组卷问题的带自适应变异的量子粒子群优化(AMQPSO)算法。首先在算法中嵌入有效判断早熟停滞的方法,一旦检索到早熟迹象,根据构造的变异概率对粒子进行变异使粒子跳出局部最优;其次基于项目反应理论,构建分步组卷问题的数学模型,减少组卷冗余度和提高组卷效率。仿真实验表明,与遗传算法相比,所提出的算法在组卷成功率和组卷质量方面均具有更好的性能。
中文关键词: 基于量子行为的粒子群优化算法(QPSO) 早熟 变异 项目反应理论(IRT) 智能组卷
Abstract:This paper puts forward an adaptive mutation of the quantum particle swarm optimization (AMQPSO) algorithm in order to improve the efficiency of autogenerating test paper. Firstly, a method of effective premature and stagnation judgement is embedded in the algorithm. Once premature signs are retrieved, the algorithm mutates particles to jump out of the local optimum particle according to the structure mutation. Secondly, the algorithm constructs a mathematical model of autogenerating test paper in steps based on Item Response Theory to reduce redundancy and improve the efficiency of autogenerating. Simulation results showed that compared with the genetic algorithm, the proposed algorithm is of better performance in both success rate and quality of autogenerating test paper.
keywords: quantum-behaved particle swarm optimization premature mutation item resPonse theory autogenerating test paper
文章编号: 中图分类号: 文献标志码:
基金项目:中北大学教改基金(2010-6)
引用文本:
李欣然,靳雁霞.一种求解组卷问题的量子粒子群算法.计算机系统应用,2012,21(7):244-248
LI Xin-Ran,JIN Yan-Xia.Quantum-Behaved Particle Swarm Algorithm on Autogenerating Test Paper.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):244-248
李欣然,靳雁霞.一种求解组卷问题的量子粒子群算法.计算机系统应用,2012,21(7):244-248
LI Xin-Ran,JIN Yan-Xia.Quantum-Behaved Particle Swarm Algorithm on Autogenerating Test Paper.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):244-248