###
DOI:
计算机系统应用英文版:2012,21(7):215-218
本文二维码信息
码上扫一扫!
一种改进离散度的特征选择方法
(1.惠州学院 计算机科学系,惠州 516007;2.华南理工大学 计算机科学与工程学院,广州 510006)
Feature Selection Method Based on Improved Scatter Degree
(1.Department of Computer Scienne, Huizhou University, Huizhou 516007, China;2.School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1887次   下载 3140
Received:October 21, 2011    Revised:November 20, 2011
中文摘要: 降维在机器学习中起着至关重要的作用。而降维的方法主要有两类:特征选择和特征提取。离散度方法是特征选择中常用的一种方法,通过计算每个特征的离散度来选择特征,被选择的特征一般都具有较高的离散度值。但是离散度的计算没有考虑到特征间的相互影响。通过改进离散度的计算,不单考虑到类间相同特征对离散度的影响,还考虑到不同特征之间的离散度影响。在UCI数据集上的实验证明,改进离散度的特征选择具有较好的性能。
Abstract:Dimension reduction is important in machine learning. The two methods of dimension reduction are feature extraction and feature selection. Scatter degree is one of the feature selection methods which attribute a degree of scattering for each feature. Features are selected that have higher scatter degree. In this paper, classification error has been reduced by considering other aspects in computing scatter degree. Experiments on UCI dataset show that improved scatter degree have a good performance on feature selection.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61170193)
引用文本:
兰远东,邓辉舫.一种改进离散度的特征选择方法.计算机系统应用,2012,21(7):215-218
LAN Yuan-Dong,DENG Hui-Fang.Feature Selection Method Based on Improved Scatter Degree.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):215-218