###
DOI:
计算机系统应用英文版:2012,21(7):191-195
本文二维码信息
码上扫一扫!
量子行为粒子群优化算法在公交调度优化中的应用
(1.中北大学 电子与计算机科学技术学院,太原 030051;2.中北大学 仪器科学与动态测试教育部重点试验室,太原 030051)
Intelligent Dispatching of Public Transit Vehicles Using Quantum-Behaved Particle Swarm Optimization Algorithm
(1.College of Computer Science and Technology, North University of China, Taiyuan 030051, China;2.Ministry of Education Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan 030051, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1680次   下载 4043
Received:December 21, 2011    Revised:January 17, 2012
中文摘要: 以公交费用最小和乘客平均等待时间最短为目标构建优化调度模型,针对已有算法在求解这类调度问题存在的早熟收敛、优化效率较低的缺点,提出了一种惯性权重自适应调整的量子行为粒子群优化算法。首先引入聚焦距离变化率的概念,将惯性权重因子表示为关于聚焦距离变化率的函数,从而使算法具有动态自适应性; 同时在算法中嵌入了一种判断和避免搜索早熟和停滞的有效方法。优化实例的结果分析表明,该算法能有效地解决公交车辆的调度优化问题。
Abstract:For the premature convergence and low efficiency optimization of the existing public transit vehicle dispatching algorithm, this paper puts forward a quantum particle swarm optimization algorithm with weight adaptive adjustments to construct optimal dispatching model aiming at the minimum cost and the shortest passenger s' mean waiting time. Firstly, the concept of focusing distance changing rate was introduced in this algorithm and inertial weighting factor was formulated as a function of focusing distance rate so as to provide the algorithm with effective dynamic adaptability. Meanwhile, a method of effective judgment of premature and stagnation is embedded in the algorithm. The optimization results show that this algorithm can effectively solve public transit vehicle dispatching problems.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61004127);中北大学青年基金
引用文本:
李欣然,靳雁霞.量子行为粒子群优化算法在公交调度优化中的应用.计算机系统应用,2012,21(7):191-195
LI Xin-Ran,JIN Yan-Xia.Intelligent Dispatching of Public Transit Vehicles Using Quantum-Behaved Particle Swarm Optimization Algorithm.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):191-195