本文已被:浏览 1848次 下载 3576次
Received:November 08, 2011 Revised:December 19, 2011
Received:November 08, 2011 Revised:December 19, 2011
中文摘要: 随着Web2.0的迅速发展,越来越多的用户乐于在互联网上分享自己的观点或体验。这类评论信息迅速膨胀,仅靠人工的方法难以应对网上海量信息的收集和处理,因此基于计算机的文本情感分类技术应运而生,并且研究的重点之一就是提高分类的精度。由于集成学习理论是提高分类精度的一种有效途径,并且已在许多领域显示出其优于单个分类器的良好性能,为此,提出基于集成学习理论的文本情感分类方法。实验结果显示三种常用的集成学习方法Bagging、Boosting和Random Subspace对基础分类器的分类精度都有提高,并且在不同
中文关键词: 文本情感分类 集成学习 Bagging Boosting Random Subspace
Abstract:With the development of Web 2.0, more and more users are happy to share their opinions and experiences on the internet. Subsequently, it is increasingly difficult for people to collect and process the huge information from the network. Therefore, text sentiment classification based on the computer is proposed to tackle this problem. And one of the most important research directions is to enhance the classification accuracy for text sentiment classification. In addition, ensemble learning is an effective approach to enhance the classification accuracy and has shown better performance than base classifiers in many fields. Based on these considerations, text sentiment classification based on ensemble learning is proposed to enhance the performance of classifiers. Experimental results reveal that three ensemble methods, i.e., Bagging, Boosting and Random Subspace, enhance the classification accuracy of different base classifiers. Compared with Bagging and Boosting, Random Subspace gets more significant improvement of the classification accuracy. All these results demonstrate the effectiveness and feasibility of application of ensemble learning in text sentiment classification.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(71101042);高等学校博士学科点专项科研基金(20110111120014);中国博士后科学基金(2011M501041);合肥工业大学博士学位专项资助基金(2010HGBZ0607)
引用文本:
方丁,王刚.基于集成学习理论的文本情感分类.计算机系统应用,2012,21(7):177-181,248
FANG Ding,WANG Gang.Text Sentiment Classification Based on Ensemble Learning.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):177-181,248
方丁,王刚.基于集成学习理论的文本情感分类.计算机系统应用,2012,21(7):177-181,248
FANG Ding,WANG Gang.Text Sentiment Classification Based on Ensemble Learning.COMPUTER SYSTEMS APPLICATIONS,2012,21(7):177-181,248