本文已被:浏览 2750次 下载 7825次
Received:September 12, 2011 Revised:October 22, 2011
Received:September 12, 2011 Revised:October 22, 2011
中文摘要: 基于LBP 算子具有旋转不变性和灰度不变性等显著特点,本文通过LBP 算子的特征提取,将人脸分成子区域,然后通过连接这些子区域的LBP 直方图生成人脸特征向量,由于生成的特征向量的维数过高,通过PCA算法降维压缩,最后用欧式距离分类器完成测试样本和训练样本的人脸识别,通过实验比较得出很好的人脸识别效果,此人脸识别算法过程用于火车站等各种公共场合有很好的应用效果。
Abstract:LBP operator has notable features of rotation invariance and gray-scale invariance etc. This paper uses LBP operator to get feature extraction, the face image is divided into sub-regions, then connecting these sub-regions LBP histogram to generate facial feature vector, because too many dimension of facial feature vector, using PCA to reduce dimension and compression. The final step is using Euclidean distance classifier to complete face recognition. Through the experimental conclusion shows very good face recognition effect. The face recognition algorithm used for various kinds of public, like the railway station have good application effect.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
黄金钰,张会林,闫日亮.LBP 直方图与PCA 的欧式距离的人脸识别.计算机系统应用,2012,21(6):202-204,198
HUANG Jin-Yu,ZHANG Hui-Lin,YAN Ri-Liang.Face Recognition of LBP Histogram PCA and Euclidean Distance.COMPUTER SYSTEMS APPLICATIONS,2012,21(6):202-204,198
黄金钰,张会林,闫日亮.LBP 直方图与PCA 的欧式距离的人脸识别.计算机系统应用,2012,21(6):202-204,198
HUANG Jin-Yu,ZHANG Hui-Lin,YAN Ri-Liang.Face Recognition of LBP Histogram PCA and Euclidean Distance.COMPUTER SYSTEMS APPLICATIONS,2012,21(6):202-204,198