###
DOI:
计算机系统应用英文版:2012,21(6):81-85
本文二维码信息
码上扫一扫!
融合遗传蚁群算法的Web 服务组合研究
(重庆大学 软件学院,重庆 400044)
Based Web Service Composition with Genetic Algorithm and Ant Colony Optimization
(College of Software Engineering, Chongqing University, Chongqing 400044, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1882次   下载 3609
Received:September 28, 2011    Revised:October 21, 2011
中文摘要: 为了提高Web 服务组合流程中服务选择技术的收敛性能,提出了一种基于遗传算法与蚁群算法相融合的多目标优化策略,用于解决基于QoS 的Web 服务组合问题。本文首先将Web 服务组合的全局最优化问题转化为寻求一条QoS 最优解的路径问题,并通过改进遗传算法得到蚁群算法中初始路径的信息素分布,再通过改进蚁群算法来求得最优解。仿真实验结果表明,该改进算法能在较少的进化代数下得到最优路径,提高了Web 服务组合的快速全局搜索能力。
Abstract:To improve the convergence ability of service selection technology in process of Web service composition, the paper presents a multi-objective optimization strategy based on genetic algorithm and ant colony algorithm to solve global optimization problem in QoS-based Web service composition. In the paper, global optimization problem in Web service composition is presented as a QoS optimal routing problem. And then, an improved genetic algorithm is proposed to get pheromone distribution in initial route of ant colony algorithm. At last, an improved ant colony algorithm is presented to get the optimal solution. Simulation result suggests that the improved algorithms can get the optimal routing in less evolutional generation than typical algorithms, and improve global research ability in Web Service composition.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(71102065)部分资助
引用文本:
曹腾飞,符云清,钟明洋.融合遗传蚁群算法的Web 服务组合研究.计算机系统应用,2012,21(6):81-85
CAO Teng-Fei,FU Yun-Qing,ZHONG Ming-Yang.Based Web Service Composition with Genetic Algorithm and Ant Colony Optimization.COMPUTER SYSTEMS APPLICATIONS,2012,21(6):81-85