###
DOI:
计算机系统应用英文版:2012,21(4):165-168
本文二维码信息
码上扫一扫!
基于模糊网络和粒子群优化的油田指标预测
(1.东北石油大学 石油与天然气工程博士后科研流动站, 大庆 163318;2.东北石油大学 计算机与信息技术学院, 大庆 163318)
Forecast of Oilfield Indexes Based on Fuzzy Neural Networks and Particle Swarm Optimization
(1.Post-doctoral Research Center of Oil and Gas Engineering, Northeast Petroleum University, Daqing 163318, China;2.School of Computer & Information Technology, Northeast Petroleum University, Daqing 163318, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1588次   下载 3189
Received:July 20, 2011    Revised:August 17, 2011
中文摘要: 针对油田开发指标预测问题,提出一种模糊神经网络模型,该模型包括输入层、模糊化层、规则层和输出层。模糊化层采用高斯隶属函数,规则层每个节点对应一条模糊逻辑规则。网络可调参数为模糊集参数和输出层权值。提出了基于改进量子粒子群优化的网络训练方法。以油田开发指标中含水率预测为例,结果表明该方法是有效的可行的。
Abstract:Aiming at the forecast of oilfield development indexes, a fuzzy neural networks model is proposed that includes input layer, fuzzification layer, rules layer, and output layer. The Gauss function is applied in fuzzification layer, and each node in rules layer corresponds to a fuzzy logic rule. The adjustable parameters of proposed model include the fuzzy set parameters and the weight value of output layer. For determining these parameters, an improved quantum particle swarm optimization is presented. With forecast of moisture content as an example, the experimental results show that this method is effective and feasible.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61170132);黑龙江省教育厅科学基金(11551015);中国博士后基金(20090460864)
引用文本:
李盼池,王海英,杨雨.基于模糊网络和粒子群优化的油田指标预测.计算机系统应用,2012,21(4):165-168
LI Pan-Chi,WANG Hai-Ying,YANG Yu.Forecast of Oilfield Indexes Based on Fuzzy Neural Networks and Particle Swarm Optimization.COMPUTER SYSTEMS APPLICATIONS,2012,21(4):165-168