###
DOI:
计算机系统应用英文版:2012,21(2):163-166
本文二维码信息
码上扫一扫!
多自适应策略粒子群优化算法及应用
(1.上海理工大学 光电信息与计算机工程学院,上海 200093;2.上海交通大学 电子信息与电气工程学院,上海 200240;3.上海电器科学研究所集团有限公司,上海 200063)
Particle Swarm Optimization Algorithm with Multi-Adaptive Strategies and its Application
(1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2.School of Electronics, Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;3.Shanghai Electrical Apparatus Research InstituteGroupCo. Ltd., Shanghai 200063, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1916次   下载 3823
Received:May 24, 2011    Revised:July 03, 2011
中文摘要: 为了平衡粒子群优化算法的全局和局部搜索能力,提出了一种多自适应策略粒子群优化算法。该算法在粒子进化过程中,采用了基于粒子进化度和局部开启混沌搜索相结合的速度自适应调节策略。将算法应用于模拟电路故障诊断的BP 神经网络训练中,有效地解决了常规BP 算法收敛速度慢、易陷入局部极小的问题。仿真结果表明算法具有较快的收敛速度和较高的诊断精度。
Abstract:In order to balance local and global search ability of particle swarm optimization algorithm, a particle swarm optimization algorithm with multi-adaptive strategies (MAS-PSO) has been proposed. In the process of particle evolution, the algorithm adopted adaptive velocity setting strategies which were based on the evolution degree of particles and local opening chaotic search. The MAS-PSO is applied to BP neural network training of analog circuit fault diagnosis, and it solved effectively the problems of slow network convergence rate in conventional BP algorithm and easily falling into partial minimum. The simulation results show it works with quicker convergence rate and higher forecast precision.
文章编号:     中图分类号:    文献标志码:
基金项目:上海市科学技术委员会火炬计划(09HJC006100)
引用文本:
谭爱国,琚长江.多自适应策略粒子群优化算法及应用.计算机系统应用,2012,21(2):163-166
TAN Ai-Guo,JU Chang-Jiang.Particle Swarm Optimization Algorithm with Multi-Adaptive Strategies and its Application.COMPUTER SYSTEMS APPLICATIONS,2012,21(2):163-166