###
DOI:
计算机系统应用英文版:2011,20(12):127-131
本文二维码信息
码上扫一扫!
基于状态持续时间的HMM语音识别模型
(上海理工大学 光电与计算机工程学院,上海 200093)
Speech Recognition Models Based on State Duration Hmm
(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1512次   下载 4107
Received:May 30, 2011    Revised:June 24, 2011
中文摘要: 针对经典隐马尔可夫模型对状态持续时间的函数表达与实际语音的物理事实不相符合这一缺点,在通常隐马尔可夫的基础上引入状态持续时间参数,建立基于状态持续时间的HMM 语音识别模型(SDHMM),并用其进行语音识别实验,与经典隐马尔可夫模型相比,识别率有所提高。
Abstract:In order to solve the Function expression of state duration of Classic hidden Markov model doesn't match The physical facts of actual voice, this article proposed a state duration based HMM(SDHMM), bring the state duration parameters into the usual hidden Markov model. With its voice recognition experiments with the classical hidden Markov models, the recognition rate improved.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
孙玉莎,王朝立,白洁,鲁国辉.基于状态持续时间的HMM语音识别模型.计算机系统应用,2011,20(12):127-131
SUN Yu-Sha,WANG Chao-Li,BAI Jie,LU Guo-Hui.Speech Recognition Models Based on State Duration Hmm.COMPUTER SYSTEMS APPLICATIONS,2011,20(12):127-131