###
DOI:
计算机系统应用英文版:2011,20(11):167-170
本文二维码信息
码上扫一扫!
对MFCC 进行GMM 聚类的汉语数字识别方法
(江南大学 物联网工程学院,无锡 214122)
Chinese Digital Identification Based on MFCC by Using GMM Clustering
(School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2302次   下载 4712
Received:March 15, 2011    Revised:April 13, 2011
中文摘要: 汉语数字识别常用MFCC 作为特征,针对0-9 十个数字MFCC 样本特征数据量大的问题,提出了用GMM模型对提取的特征参数MFCC 的数据进行聚类来减少数据量,以GMM 模型参数中的均值作为新的特征,采用动态规划算法进行汉语数字语音识别。仿真实验表明,进行GMM 特征变换后的新特征数据为MFCC 的30.9%,系统运行时间减少了237.18s,识别率降低1.11%。
中文关键词: 汉语数字识别  MFCC  GMM 聚类
Abstract:MFCC is widely used in Chinese digital identification. Because the amount of MFCC extracted from 0-9 is too large, the mean of model parameters which is clustered with GMM by MFCC to reduce the amount is employed as a new feature with DTW for Chinese digital identification. Simulation results demonstrate that the amount of the new feature is 30.9% to that of MFCC, the running time reduces by 237.18s, but the recognition rate decreases by 1.11%.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61075008)
引用文本:
高文曦,于凤芹.对MFCC 进行GMM 聚类的汉语数字识别方法.计算机系统应用,2011,20(11):167-170
GAO Wen-Xi,YU Feng-Qin.Chinese Digital Identification Based on MFCC by Using GMM Clustering.COMPUTER SYSTEMS APPLICATIONS,2011,20(11):167-170