本文已被:浏览 1626次 下载 2975次
Received:March 03, 2011 Revised:March 26, 2011
Received:March 03, 2011 Revised:March 26, 2011
中文摘要: 虽然现有的很多聚类算法能发现任意形状、任意大小的类,但用于多密度的数据集时却难以取得令人满意的结果。为提高对多密度数据集的聚类效果,提出了一种基于网格和信息熵的多密度聚类算法,它通过不同密度的网格所携带的信息熵,自动计算出密度阈值,找出在多密度数据集中不同的类。实验证明,该算法能有效的去处噪声,发现多密度的类,具有较好的聚类效果。
Abstract:Although many existing clustering algorithm can find the arbitrary shape and different size clusters, but it is difficult to obtain satisfactory results for multi-density data set. In order to improve the quality and efficiency of clustering algorithm, the paper presents a new improving precision clustering algorithm based on grid and information entropy, which through information entropy which carried by the different densities of grid to automatically calculate the density threshold, and then identify different clusters in the multi-density data set. Experiments show that the algorithm can wipe off the noise effectively and find out the multi-density clusters that have better clustering results.
文章编号: 中图分类号: 文献标志码:
基金项目:湖南省自然科学基金(08JJ3132)
引用文本:
周悦来,谭建豪.基于网格和信息熵的多密度聚类算法.计算机系统应用,2011,20(10):189-192
ZHOU Yue-Lai,TAN Jian-Hao.Grid-Based and Information Entropy-Based Clustering Algorithm for Multi-Density.COMPUTER SYSTEMS APPLICATIONS,2011,20(10):189-192
周悦来,谭建豪.基于网格和信息熵的多密度聚类算法.计算机系统应用,2011,20(10):189-192
ZHOU Yue-Lai,TAN Jian-Hao.Grid-Based and Information Entropy-Based Clustering Algorithm for Multi-Density.COMPUTER SYSTEMS APPLICATIONS,2011,20(10):189-192