###
DOI:
计算机系统应用英文版:2011,20(10):109-112,128
本文二维码信息
码上扫一扫!
基于小波域差值系数的织物疵点分割与识别
(江南大学 物联网工程学院,无锡 214122)
Fabric Defects Classification and Identification Based on the Subtracted Images of Wavelet Coefficients
(Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1829次   下载 3116
Received:March 01, 2011    Revised:March 25, 2011
中文摘要: 小波分解系数的织物疵点特征曲线容易受各层周期性噪声的影响,不能有效提取特征和定位疵点区域。提出了小波域差值系数的织物疵点分割与识别方法。首先将小波分解后的水平和垂直高频系数与平滑系数相减,除去周期性噪声,然后,分别提取水平和垂直差值系数熵、能量、方差曲线的最大值、均值及方差特征参数,最后利用支持向量机进行分类识别。仿真实验表明,该方法不仅能对织物疵点区域进行有效定位和分割,且识别率较直接提取小波系数特征的方法提高了4.17%。
Abstract:Fabric defect characteristic curves of the wavelet coefficients are vulnerable to periodic noise in all layers. It cannot effectively extract features and locate defects area. This paper proposed a method of feature extraction and defect segmentation based on the parameters of entropy, energy, variance curve of difference coefficient after wavelet transform. Firstly, it subtracts the horizontal and vertical high-frequency decomposition coefficients with the smoothing coefficients after wavelet transform, removes the periodic noise, extracts maximum, mean and deviation parameters from the curve difference horizontal and vertical coefficient. Then, it uses support vector machine to classify the extracted features. Simulation results show that the method can effectively locate and segement fabric defect region, and the recognition rate increased by 4.17% compared with the features extracted by wavelet coefficients.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
赵静,于凤芹.基于小波域差值系数的织物疵点分割与识别.计算机系统应用,2011,20(10):109-112,128
ZHAO Jing,YU Feng-Qin.Fabric Defects Classification and Identification Based on the Subtracted Images of Wavelet Coefficients.COMPUTER SYSTEMS APPLICATIONS,2011,20(10):109-112,128