###
DOI:
计算机系统应用英文版:2011,20(9):248-251
本文二维码信息
码上扫一扫!
零件尺寸图像检测数据处理与高精度检测方法
(1.广东工业大学 信息工程学院,广州 510006;2.怀集登云汽配股份有限公司,怀集 526400)
Methods of Data Processing and High Accurate Detection for Image Detection of Part Sizes
(1.Faculty of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China;2.Huaiji Dengyun Auto Parts Co. Ltd, Guangzhou 56400, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2322次   下载 4818
Received:January 17, 2011    Revised:March 02, 2011
中文摘要: 针对机器视觉在轴类零件尺寸检测中的应用,提出了一种利用工业中常用的标准件同时完成视觉检测系统的图像畸变校正与系统标定的方法,有效的提高了检测精度,简化了传统系统标定的繁琐过程.该方法通过分析图像检测中误差形成的主要来源,建立了误差方程的正规方程式,在求解正规式系数的同时完成对检测系统的校正与标定.不但操作简单,且具有较高的检测精度.经实验证明,在检测分辨率为3450DPI 的情况下,检测精度可达到4μm,完全适用于轴类零件的高精度检测.
中文关键词: 视觉检测  尺寸检测  畸变校正  标定  标准件
Abstract:For the use of Machine Vision in shaft size detection, this paper propose a method which completes the image distortion correction and system calibration by using commonly used industry standard parts. This method effectively improves the detection accuracy, simplifies the tedious process of calibration of conventional systems. By analyzing the main causes of error in image detection, the formal equation from error equation is established. Image distortion is corrected and calibrated at the same time. The coefficient of normal-type is calculated. This method is not only simple, but also effective to improve the accuracy of the image detection. The experiment proves that detection accuracy can reach 4μm at the resolution of 3450DPI, completely applicable to high-precision detection of shaft.
文章编号:     中图分类号:    文献标志码:
基金项目:教育部广东省产学研结合项目(2010B090400382)
引用文本:
黄品松,徐杜,蒋永平,郭斌,陈济棠,孔海鹏,梁柱.零件尺寸图像检测数据处理与高精度检测方法.计算机系统应用,2011,20(9):248-251
HUANG Pin-Song,XU Du,JIANG Yong-Ping,GUO Bin,CHEN Ji-Tang,KONG Hai-Peng,LIANG Zhu.Methods of Data Processing and High Accurate Detection for Image Detection of Part Sizes.COMPUTER SYSTEMS APPLICATIONS,2011,20(9):248-251