###
DOI:
计算机系统应用英文版:2011,20(9):107-111,173
本文二维码信息
码上扫一扫!
异视场多目标匹配跟踪技术
(武夷学院 数学与计算机系,武夷山 354300)
Multi-Objective Matching Track in Different Scene
(Department of Mathematics & Computer, Wuyi University, Wuyisha 354300, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1575次   下载 3373
Received:January 11, 2011    Revised:February 26, 2011
中文摘要: 针对宽泛条件下不同视域场景多摄像机多目标的匹配跟踪问题,提出了一种基于纯目标的强鲁棒自适应SIFT(Scale Invariant Feature Transform)特征匹配算法.该方法为每个从视频图像中提取出的纯目标设置一个CamShift(Continuously Adaptive Mean Shift)跟踪器,利用自适应尺度空间因子提取目标的细节特征,采用基于BBF(Best Bin First)的双向匹配策略去除误匹配点,当目标的关键点数量太少,无法满足计算三维二次函数精确关键点位置时,构造了自
Abstract:According to the continuous tracking of multi-camera to multi-objective under the broad condition for different scene, this paper proposes a matching algorithm based on characteristics of the pure goal of robust adaptive SIFT (Scale Invariant Feature Transform). This method establishes a CamShift (Continuously Adaptive Mean Shift) tracking device for each pure goal which withdraws from the video image. It uses adaptive criterion space factor to get detail characteristic of goal. It uses the bilateral matching strategy based on BBF (Best Bin First) to elimination the error matching points. When the quantity of the goal key points is too few to satisfy the calculation the precise key point position of computation three dimensional quadratic function, it designs the adaptive criterion Harris vertex examination law to supplement the new spot. The experiment of continuous tracking outdoor vehicles in different settings indicates that this algorithm timeliness is good and its adaptive ability is strong. Compared with other algorithms, this algorithm consumes less match time, but is high in tracking precision.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省自然科学基金(2006J0414)
引用文本:
曲巨宝.异视场多目标匹配跟踪技术.计算机系统应用,2011,20(9):107-111,173
QU Ju-Bao.Multi-Objective Matching Track in Different Scene.COMPUTER SYSTEMS APPLICATIONS,2011,20(9):107-111,173