本文已被:浏览 2302次 下载 3679次
Received:November 12, 2010 Revised:January 07, 2011
Received:November 12, 2010 Revised:January 07, 2011
中文摘要: 针对粒子群算法存在易陷入局部最优解的问题,提出了一种并行的自适应量子粒子群算法.通过共享粒子的两个极值,将改进后的自适应粒子群算法和边界变异的量子粒子群算法并行搜索,有效地克服了标准粒子群算法的缺陷.测试结果表明,该算法在精度和全局最优解的找寻速度方面有了很大的提高.
Abstract:A new parallel adaptive quantum particle swarm opitimzation algorithm is proposed in this paper to solve the problem that standard particle swarm optimization(PSO) algorithm may easily trap into local optimal points and may obtain exact solutions at the late of the iteration with difficultly. By sharing the two extreme values of the particles, the proposed method is able to adaptively search their optimum solutions in parallel by combination of an improved adaptive PSO with a quantum Particle Swarm Optimization of boundary variation. It is proved effectively to overcome the shortcomings of standard PSO. Test results show that the accuracy and the velocity of global search for optimal solutions have been greatly improved.
keywords: adptive PSO quantum PSO parallel search
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(60876022,50925727);高技术与发展基金(2006AA04A104);湖南省自然基金(07JJ6132);中央高校基本科研业务费
引用文本:
熊智挺,谭阳红,易如方,陈赛华.一种并行的自适应量子粒子群算法.计算机系统应用,2011,20(8):47-51,71
XIONG Zhi-Ting,TAN Yang-Hong,YI Ru-Fang,CHEN Sai-Hua.Method of Parallel Adaptive Quantum Particle Swarm Optimization.COMPUTER SYSTEMS APPLICATIONS,2011,20(8):47-51,71
熊智挺,谭阳红,易如方,陈赛华.一种并行的自适应量子粒子群算法.计算机系统应用,2011,20(8):47-51,71
XIONG Zhi-Ting,TAN Yang-Hong,YI Ru-Fang,CHEN Sai-Hua.Method of Parallel Adaptive Quantum Particle Swarm Optimization.COMPUTER SYSTEMS APPLICATIONS,2011,20(8):47-51,71