###
DOI:
计算机系统应用英文版:2011,20(7):217-220
本文二维码信息
码上扫一扫!
支持OpenCL 的GPU 加速人工神经网络训练
(重庆大学 软件工程学院,重庆 400044)
Accelerating of Artificial Neural Network Training by GPU with OpenCL Support
(School of Software Engineering, Chongqing University, Chongqing, 400044, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2158次   下载 4402
Received:October 20, 2010    Revised:December 04, 2010
中文摘要: 人工神经网络训练所包含的运算量随着网络中神经元的数量增多而加大,对于神经元较多的网络训练很耗时。提高人工神经网络训练速度的一个方法是对训练算法优化以减少计算量。由于人工神经网络训练算法包含大量的矩阵和向量运算,如果把优化的算法用运行在GPU 上的OpenCL C 语言实现,则训练速度相比传统基于CPU 计算的实现会提高很多。从硬件的并行计算能力着手,以RPROP 算法为例,对其运行在GPU 上的OpenCL C 语言实现作一些研究。
中文关键词: 加速  人工神经网络  RPROP  OpenCL  CPU
Abstract:The computation quantity in artificial neural network training will get more and more with the increase of neurons quantity, it is time-consuming for training a neural network with too many neurons. A method that accelerates artificial neural network training is to optimize the training algorithm, so as to reduce the computation quantity. Since there is too much matrix and vector computation in artificial neural network training algorithm, the optimized training algorithm implemented by OpenCL C language on GPU, compared to the conventional CPU-based implementation, the training speed will be increased a lot. Based on parallel computing ability of hardware, accelerating of artificial neural network training by GPU with OpenCL Support is researched in this paper.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
祝伟华,付先珺.支持OpenCL 的GPU 加速人工神经网络训练.计算机系统应用,2011,20(7):217-220
ZHU Wei-Hua,FU Xian-Jun.Accelerating of Artificial Neural Network Training by GPU with OpenCL Support.COMPUTER SYSTEMS APPLICATIONS,2011,20(7):217-220