###
DOI:
计算机系统应用英文版:2011,20(7):90-93
本文二维码信息
码上扫一扫!
基于模拟退火的K调和均值聚类算法
(河北工业大学 计算机科学与软件学院,天津 300401)
K-Harmonic Means Clustering with Simulated Annealing
(Department of Computer Science and Software, Hebei University of Technology, Tianjin 300401, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1865次   下载 4062
Received:October 26, 2010    Revised:December 03, 2010
中文摘要: K 均值算法是最通用的划分聚类算法,然而它有高度依赖初始值和收敛于局部最小的缺点,K 调和均值算法采用数据点与所有聚类中心的距离的调和平均替代了数据点与聚类中心的最小距离,解决了K 均值算法对初值敏感的问题。这样虽然解决初始值敏感问题,局部最小收敛问题仍然存在。为了获得全局最优解,提出一种新的算法:基于模拟退火算法的K 调和均值聚类。该算法将一种优秀的随机搜索算法——模拟退火算法引入K 调和均值聚类,来解决局部最小收敛的问题,并将改进后的算法用于IRIS 数据集的聚类分析,聚类结果与K 均值算法结果对比,证明了改进算法的优越性。
中文关键词: 聚类  K 均值  调和均值  模拟退火  局部最小
Abstract:K-means algorithm is a frequently-used methods of partition clustering. However, it greatly depends on the initial values and converges to local minimum. In K-harmonic means clustering, harmonic means fuction which apply distance from the data point to all clustering centers is used to solves the problem that clustering result is sensitive to the initial valve instead of the minimum distance. Although the problem above is solved, the problem converged to local minimum is still existed. In order to obtain a glonal optimal solution, in this paper, a new algorithm called K-harmonic means clustering algorithm with simulated annealing was proposed. This alhorithm is introduced into simulated annealing to solve the the problems of local minimum. Then the algorithm was used to analyse IRIS dataset and get a conclution that the new algorithm get a glonal optimal solution and reached a desired effect.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
刘国丽,甄晓敏.基于模拟退火的K调和均值聚类算法.计算机系统应用,2011,20(7):90-93
LIU Guo-Li,ZHEN Xiao-Min.K-Harmonic Means Clustering with Simulated Annealing.COMPUTER SYSTEMS APPLICATIONS,2011,20(7):90-93