###
DOI:
计算机系统应用英文版:2011,20(7):65-68
本文二维码信息
码上扫一扫!
结合最大熵模型和tag 特征的混合推荐系统
(中国科学技术大学 管理学院,合肥 230026)
Hybrid Recommendation System Combining Maximum Entropy and Tag Features
(School of Management, University of Science and Technology of China, Hefei 230026, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1735次   下载 3741
Received:November 05, 2010    Revised:December 20, 2010
中文摘要: 由于用户数目的不断增多以及信息量的快速膨胀,传统协同过滤(CF)中的数据矩阵稀疏性问题显得愈为突出。为此我们提出了一种新的混合推荐方法。首先,我们在最大熵模型下综合考虑tag 信息和rating 信息作为约束条件,然后分别针对tag 信息和rating 信息定义相关的特征并且计算其相应的权重,最后利用先前计算出的权重预测当前用户对于目标项目的评分概率分布,并且选出概率最大的作为预测评分。实验证明,该方法能有效提升推荐系统的准确率。
中文关键词: 最大熵  推荐系统  协同过滤  稀疏性  tag
Abstract:Because of the growing number of users and the rapid expansion of information, sparse problem of data matrix in traditional collaborative filtering becomes more seriously. We proposed a new hybrid recommendation system. Firstly, we consider tag information and rating information as constraints under maximum entropy model. Secondly, we define the features of tag information and rating information and calculate the corresponding weights. Finally, we use previously weights to predict probability distribution of target item for current user, then we choose the highest probability as predicted rating. Experiment results show that the proposed method can effectively improve the accuracy of recommendation systems.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
王卫平,杨磊.结合最大熵模型和tag 特征的混合推荐系统.计算机系统应用,2011,20(7):65-68
WANG Wei-Ping,YANG Lei.Hybrid Recommendation System Combining Maximum Entropy and Tag Features.COMPUTER SYSTEMS APPLICATIONS,2011,20(7):65-68