###
DOI:
计算机系统应用英文版:2011,20(6):207-211
本文二维码信息
码上扫一扫!
改进的规范割方法提取肉品图像中肌肉和脂肪
(1.西南科技大学 计算机科学与技术学院, 绵阳 621000;2.南京农业大学 食品科技学院, 南京 210095)
Extracting Muscle and Fat from Meat Image Using Improved Ncut
(1.College of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China;2.College of Food Science , Nanjing Agricultural University, Nanjing 210095, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1573次   下载 3281
Received:October 11, 2010    Revised:November 22, 2010
中文摘要: 肉品图像中脂肪与肌肉的精确提取是无损检测的关键技术之一,针对这一问题,在规范割方法(Normalized cut,Ncut)的基础上,为了减少计算复杂度,提出了一种改进算法。首先,利用基于矩的阈值选择方法将肉品区域从背景中分割出来;其次,量化色彩等级,为肉品区域创建彩色直方图;最后,计算彩色直方图的相似度矩阵,并使用规范割做为谱聚类测度对直方图进行划分,按照直方图划分结果提取肌肉和脂肪。实验表明,和基于像素的谱聚类算法相比,改进算法不但降低了计算复杂度,且能有效提取肌肉与脂肪。
Abstract:The accurate extraction of fat and muscle from meat image is one of the key technologies in nondestructive test (NDT). To deal with this problem, based on the normalized cut(Ncut) method, in order to reduce the computational complexity, an improved algorithm has been put forward. Firstly, the basedmoment threshold selection method to separate the meat out from the background region. Secondly, the quantitative color grade creates the color histogram for the meat area. Finally, to calculate the similar matrix of color histogram, and exploit the normalized cut as a measurement of spectral clustering on dividing histogram, in the light of the consequence in histogram partition to extract muscle and fat. Experiments illustrate that to compare with the pixel-based spectral clustering algorithm, the improved algorithm does not only reduce the computational complexity, but also the optimum segmentation.
文章编号:     中图分类号:    文献标志码:
基金项目:国家高技术研究发展计划(863)(2008AA10Z211);校博士基金(08zx7101)
引用文本:
李振江,贾渊,彭增起.改进的规范割方法提取肉品图像中肌肉和脂肪.计算机系统应用,2011,20(6):207-211
LI Zhen-Jiang,JIA Yuan,PENG Zeng-Qi.Extracting Muscle and Fat from Meat Image Using Improved Ncut.COMPUTER SYSTEMS APPLICATIONS,2011,20(6):207-211