###
DOI:
计算机系统应用英文版:2011,20(6):103-108
本文二维码信息
码上扫一扫!
基于概念格的空间聚类方法
(1.中南大学 湘雅二医院, 长沙 410011;2.中南大学 地球科学与信息物理学院, 长沙 410083)
A Spatial Clustering Method Based on Concept Lattices
(1.The second hospital, Central South University, Changsha 410011, China;2.School of Geosciences and info-physics, Central South University, Changsha 410083, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1608次   下载 3377
Received:November 10, 2010    Revised:December 13, 2010
中文摘要: 空间聚类一直是空间数据挖掘研究的热点之一。现有的聚类方法大都局限于根据空间位置来进行空间聚类的,忽略了空间对象的专题属性,从而导致空间聚类结果有时完全不符合人的空间认知,缺乏合理的解释。为此,综合考虑空间对象的位置和专题属性,提出了一种基于概念格的空间聚类(Concept Lattices Based SpatialCluster, CLBSC)方法。该方法通过构建多维专题属性的概念格,简化了空间聚类计算。最后,通过两组实验对CLBSC 算法进行了验证分析,研究结果表明:所提出的CLBSC 算法是一种具有
Abstract:Spatial clustering is a hot issue in the field of spatial data mining. For a spatial object, the spatial location and the thematic attributes of spatial data are the inherent characteristics. However, the existing approaches mostly regard only the distance of spatial location as the similarity metric of spatial clustering, ignoring the thematic attributes of spatial objects. The results of these spatial clustering methods are not reasonable. Thus, a new spatial clustering method, named Concept Lattices Based Spatial Cluster (CLBSC for short) is proposed in this paper. The method considers both the spatial distance and attribute distance, and it simplifies the computation via building multi-dimensional attribute lattices. Furthermore, many concepts about CLBSC are expounded and its algorithm is narrated in detain. Finally, two experiments demonstrate that CLBSC algorithm is able to find more outlier and improve the reliability of spatial clustering using the Same Lattices Number.
文章编号:     中图分类号:    文献标志码:
基金项目:国家高技术研究发展计划(863)(2009AA12Z206);湖南省自然科学基金(09JJ6061)
引用文本:
殷俊华,李光强,陈翼,邓敏.基于概念格的空间聚类方法.计算机系统应用,2011,20(6):103-108
YIN Jun-Hua,LI Guang-Qiang,CHEN Yi,DENG Min.A Spatial Clustering Method Based on Concept Lattices.COMPUTER SYSTEMS APPLICATIONS,2011,20(6):103-108