###
DOI:
计算机系统应用英文版:2011,20(4):182-185
本文二维码信息
码上扫一扫!
基于脉冲神经网络模型的车辆车型识别
(福建师范大学 物理与光电信息科技学院,福州 350007)
Identification of Vehicle Types Based on Spiking Neural Network Model
(School of Physics and OptoElectronics Technology, Fujian Normal University, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2647次   下载 5076
Received:July 19, 2010    Revised:August 31, 2010
中文摘要: 准确提取各种运动目标的特征并将它们加以分类识别,是近年来图像处理和人工智能研究中的热点之一。针对识别运动车辆车型需求,提出了在利用脉冲神经网络模型对运动车辆进行边缘提取的基础上提取运动目标的不变线矩特征,再用这些特征训练神经网络对车型进行识别的方法。试验结果表明该模型能准确的提取运动目标的特征,从而提高分类的效果。在今后的智能监控系统中有广阔的应用前景。
Abstract:Accurate feature extraction and recognition of moving objects are the hot spots in image processing and artificial intelligence research domains. In order to identify the types of moving vehicles, this paper proposed an identification approach in which edges of the moving vehicle are extracted by a spiking neural network model. The line moment of moving vehicle is used as the features to train a neural network, and then the neural network is used to identify type of the moving vehicle. The results of the simulation show that the approach can accurately extract the features of the moving vehicles so that the accuracy of identification has been improved. This approach shows a promising prospect in the application of intelligent surveillance systems in the future.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省自然科学基金(2009J05141);福建省教育厅科技计划(JA09040)
引用文本:
陈浩,吴庆祥,王颖,林梅燕,蔡荣太.基于脉冲神经网络模型的车辆车型识别.计算机系统应用,2011,20(4):182-185
CHEN Hao,WU Qing-Xiang,WANG Ying,LIN Mei-Yan,CAI Rong-Tai.Identification of Vehicle Types Based on Spiking Neural Network Model.COMPUTER SYSTEMS APPLICATIONS,2011,20(4):182-185